
Replicated state machines without replicated execution
Jonathan Lee Kirill Nikitin� Srinath Setty

Microsoft Research �EPFL

Abstract
This paper introduces a new approach to reduce end-to-end

costs in large-scale replicated systems built under a Byzantine

fault model. Specifically, our approach transforms a given

replicated state machine (RSM) to another RSM where nodes

incur lower costs by delegating state machine execution: an

untrusted prover produces succinct cryptographic proofs of

correct state transitions along with state changes, which nodes

in the transformed RSM verify and apply respectively.

To realize our approach, we build Piperine, a system that

makes the proof machinery profitable in the context of RSMs.

Specifically, Piperine reduces the costs of both proving and

verifying the correctness of state machine execution while

retaining liveness—a distinctive requirement in the context of

RSMs. Our experimental evaluation demonstrates that, for a

payment service, employing Piperine is more profitable than

naive reexecution of transactions as long as there are > 104

nodes. When we apply Piperine to ERC-20 transactions in

Ethereum (a real-world RSM with up to 105 nodes), it reduces

per-transaction costs by 5.4× and network costs by 2.7×.

1 Introduction
A modern example of a large-scale replicated system is a

blockchain network [64, 86], which employs replication to

enable mutually-distrusting entities to transact without rely-

ing on trusted authorities. Specifically, blockchains instantiate

replicated state machines (RSMs) [71] under a Byzantine

fault model in an open, permissionless network where each

node executes and validates every transaction. Unfortunately,

the most popular blockchains achieve a throughput of only

a handful of transactions per second. This has motivated re-

search to improve throughput and to reduce costs, for example,

by changing the underlying consensus protocol used to real-

ize RSMs [41, 46, 50]. These proposals, however, introduce

additional assumptions for safety and/or liveness (§7).

We consider a different approach, one that applies to any

existing replicated state machine in a Byzantine fault model

(including blockchains) without any changes to the underlying

consensus protocol. Naturally, it does not introduce any strong

assumptions for safety or liveness. In fact, this approach is

complementary to aforementioned advances [41, 46, 50] and

can be used in conjunction with those proposals. Our ap-

proach is based on work in the area of proof-based verifiable
computation (see [83] for a survey), which has developed a

powerful primitive called verifiable state machines [24, 73]:

for a state machine S and a batch of transactions x, an un-

trusted prover can produce outputs y and a short proof π
such that a verifier can check if y is the correct output of

S with x as input (using π)—without reexecuting the state

transitions. Furthermore, the cost of verifying such a proof is

less than reexecuting the corresponding state transitions and

the size of the proof is far less than the size of the original

batch of transactions. Thus, nodes (in an RSM) that replicate

a state machine S can delegate S to an untrusted prover and

then replicate the verifier at each node to verify the prover’s

proofs. Naturally, if the end-to-end resource costs of the trans-

formed RSM (CPU, storage, network, etc.) is cheaper than

the original RSM, verifiable delegation leads to lower costs.

In theory, the above picture is straightforward and offers

a principled solution to reduce end-to-end costs of a repli-

cated system. However, in practice, the above approach is

completely impractical. Specifically, even with state-of-the-

art systems for verifiable outsourcing, the verifier is more

resource-efficient compared to reexecution only under narrow

regimes [80, 81, 83]. Furthermore, in the context of RSMs,

the verifier running at each node must have a copy of the del-

egated state machine’s state, otherwise liveness of the trans-

formed RSM hinges on the liveness of the prover (relying on

the prover for liveness introduces attack vectors for mount-

ing denial of service). Finally, the prover’s cost to produce a

proof is 104–107× higher than natively executing the corre-

sponding state transition (the overheads depends on whether

the outsourced computation is efficiently representable in the

computational model of the proof machinery) [73, 81].

The primary contribution of this paper is a set of techniques

to reduce the costs of verifiable state machines in the con-

text of RSMs and to ensure liveness without increasing the

costs of the prover. To demonstrate the benefits of these tech-

niques, we build a system called Piperine. When we apply

Piperine to a popular type of state machine on Ethereum’s

blockchain, Piperine’s proofs act as compressed information

(e.g., there is no need to transmit digital signatures or the raw

transactions over the blockchain), which allows Piperine to

transparently reduce per-transaction network costs by 2.7×
and per-transaction end-to-end costs by 5.4×. Beyond cost re-

ductions, Piperine resolves an open question in the context of

replicated systems: Piperine offers the first approach to build

RSMs with concurrent transaction processing in a permis-

sionless model. Note that prior works that achieve concurrent

transaction processing in RSMs [9, 49] require substantial

changes to the underlying consensus protocol and apply only

to a permissioned membership model.

Reducing costs. To tame costs imposed by the proof machin-

ery, Piperine leverages the following observations: (1) in our

target state machines, the primary computational bottleneck

of a state transition is authenticating a transaction by verify-

ing a digital signature; and (2) in the context of blockchains

(and RSMs that favor throughput over latency), there is signif-

icant opportunity for processing transactions in batches. The

first observation enables Piperine to substantially drive down

end-to-end costs of the prover by aggressively optimizing the

signature verification operation in the proof machinery (i.e.,

verifying a signature with a smaller circuit). Our optimizations

include a careful choice of cryptographic primitives as well

as several low-level cryptographic engineering techniques

such as double-scalar multiplication, windowing, efficient big

number arithmetic, etc.1 Due to the second observation, the

prover can produce a single proof for a batch of transactions,

and the verifier incurs a near-constant cost to verify that proof.

To drive down the verifier’s costs further, Piperine employs

techniques from delegating state [24, 35, 43]—even when not
delegating state—to replace expensive modular exponentia-

tions with inexpensive hash operations.

Achieving liveness. To achieve liveness, the verifier must

efficiently receive and verify state changes from the prover—

without trusting the prover. In the context of blockchains,

such liveness is critical: without liveness, a malicious prover

can prevent certain (or all) transactions from being executed.

Unfortunately, with prior state-of-the-art in verifiable state ma-

chines, the verifier’s cost to receive and verify state changes

is proportional to the size of the entire state of the prover,

making the whole approach infeasible. Piperine addresses

this with new techniques. Specifically, we observe that the

verifier can verify purported state changes during an epoch (a

time period where a prover executes a batch of transactions)

as long as it retains the digest of the prover’s state both at the

beginning and the end of an epoch. The computational cost

of this process to the verifier is proportional to the number of

state changes within the epoch, which is theoretically optimal.

Implementation and evaluation. We implement Piperine

atop Spice [73], inheriting an end-to-end compiler toolchain:

A programmer can express a state machine in a broad subset

of C and compile it into a prover and a verifier, with the prover

designed to run on a distributed cluster. We also extend the

compiler toolchain to produce a verifier in Solidity, a lan-

guage for writing state machines that run on Ethereum. Using

the toolchain, we implement a blockchain-based payment ser-

vice with a standardized interface [79]. We then evaluate this

artifact using workloads modeled after real-world traces. We

find that Piperine reduces end-to-end costs of a transaction by

5.4× and network costs by 2.7× (§6.3). Whilst Piperine does

not directly reduce mining costs of Ethereum, Piperine exe-

cutes more transactions per block, and so effectively reduces

per-transaction mining (and associated energy) costs.

Finally, we believe this work represents the first large-scale

application of cryptographic proof machinery, and, to the

1Such optimizations are widely used for code running on standard hardware,

but it is non-trivial to realize them in the computational model of the proof

machinery, which is clumsy from a programmability perspective.

best of our knowledge, describes the first instance in which

verifiably delegating computation improves the performance

of a large-scale distributed system.

2 Piperine’s base machinery
This section describes machinery that Piperine employs: verifi-
able state machines [73], a primitive that involves two entities,

a prover P and a verifier V , and a state machine S. It enables

the following setup. V and P agree on a non-deterministic

state machine M = (Ψ,S0), where Ψ is a program that en-

codes state transitions and S0 is the initial state of the machine.

Both V and P are given as inputs auxiliary setup material pp
related to Ψ. The internal state of P is S , which is initialized

to S0, and the internal state of V is d, which is initialized to

H(S0), where H is a collision-resistant hash function.

• P executes a state transition using input x and non-

deterministic choices w for M to produce an output y
and an updated state:

(y,S ′) ← Ψ(x, w,S) ; S ← S ′

P sends (x, y,π, d′) to V , where π is a proof, d′ = H(S ′).

• V runs a local check using (pp, x, y,π, d, d′) that outputs

b ∈ {0, 1}; if b = 1, V sets d ← d′, else it aborts.

A verifiable state machine is a succinct non-interactive argu-

ment of knowledge [21, 45] for the language of state machine

transitions. Informally, it offers the following guarantees un-

der a set of cryptographic hardness assumptions.

• Completeness. If y is the correct output of transitioning

M with input x, some non-deterministic choices w, and d′

is the correct digest of the updated state, P can produce a

tuple (x, y,π, d′) such that V updates its internal state to d′.

• Knowledge soundness. If P produces a tuple (x, y,π, d′)
that makes V update its internal state from d to d′, then

there exists a PPT algorithm, called an extractor, that, with

oracle access to P , can output (w,S ,S ′) such that (y,S ′) =
Ψ(x, w,S) ∧H(S ′) = d′ ∧H(S) = d.

• Efficiency. The CPU cost of verifying π is lower than the

cost of executing M’s state transitions.

APIs and programming model. In Spice [73], Ψ is ex-

pressed in a broad subset of C, which includes functions,

structs, typedefs, preprocessor macros, if-else statements,

loops (with static bounds), explicit type conversions, and

standard integer and bitwise operations. For Ψ to interact

with persistent storage, Spice offers: (1) a block store with

GetBlock/PutBlock APIs; and (2) a key-value store with a

standard get/put interface and concurrency control primi-

tives (e.g., lock/unlock) and simple transactions.

The prover runs multiple instances of Ψ in different threads.

Each thread processes distinct transactions and the shared

state is stored in a logically centralized key-value store. In

this context, Spice [73] guarantees sequential consistency [54]

for single-object operations (where an object is a key-value

pair) and serializability [20, 66] for multi-object transactions.

Mechanics. Spice [73] and its predecessors [15, 18, 24, 35,

67, 74–76, 81, 89] proceed in two steps. First, they reduce the

task of proving the correct execution of a state machine to the

task of proving the satisfiability of a set of equations. Second,

the prover employs a cryptographic machinery to prove the

satisfiability of the set of equations—by producing a proof.

The latter ensures that the verifier is more resource-efficient

than reexecuting state transitions.

(1) Program executions to constraints. Spice’s compiler

transforms Ψ to algebraic constraints, a model of computa-

tion where a program is represented as a system of equations

and variables take values from a finite field Fp for a large

prime p. The compiler operates line-by-line over Ψ: loops are

unrolled and then each program statement is compiled to one

(or more) equations. The compiler ensures the following prop-

erty: the set of equations is satisfiable—there exists a solution

(a setting of values to variables) to constraints—if and only
if the output is correct. To illustrate, consider a toy computa-

tion and its equivalent constraints (uppercase letters denote

variables and lowercase letters denote concrete values):

int incr(int x) {
int y = x + 1;
return y;

}

C =

⎧⎨
⎩

X − x = 0

Y − (X + 1) = 0

Y − y = 0

⎫⎬
⎭

For the above constraints, if y = x + 1, {X ← x, Y ← y}
is a solution. If y �= x + 1, then there is no solution and the

constraint set is not satisfiable.

(2) Proving the satisfiability of constraints succinctly.
The prover identifies a solution to the equations using input

x. Since the verifier must be able to check this solution in

time sublinear in the running time of the computation, the

prover cannot simply send its solution to the verifier. Instead,

Spice employs cryptographic machinery (called an argument
protocol) to encode the prover’s solution as a succinct proof

πx. This machinery is detailed at length elsewhere [15, 18,

24, 47, 67, 81, 83]. We now focus on details relevant for this

work: how does Spice encode state in constraints?

Supporting state in the constraints formalism. We begin

with Spice’s block store, which it inherits from Pantry [24].

Consider the following program that takes as input a digest
(e.g., a SHA-256 hash) and accesses the prover’s block store

using GetBlock/PutBlock APIs:

Digest increment(Digest d) {
// produces equations that check d==Hash(block)
int block = GetBlock(d);
int block’ = block + 1;
// produces equations that check d’==Hash(block’)
Digest d’ = PutBlock(block’);
return d’;

}

Spice’s compiler translates each GetBlock call to a set of

equations that check if the hash of the supplied block equals

the input digest (this requires representing a hash function as a

set of constraints). PutBlock translates to a similar set of con-

straints. Since the verifier supplies digests, unless the prover

identifies a hash collision (which is infeasible), the prover is

compelled to supply the correct block to each GetBlock and

supply the correct digest as the response to each PutBlock.
Key-value store. Spice supports a key-value store using

a particular type of hash function H(·) that operates on sets

and is incremental [10, 11, 32]: given a set-digest dS for a set

S, and a set W, one can efficiently compute a set-digest for

S∪W. Specifically, there is a constant time operation ⊕ where:

H(S ∪ W) = H(S) ⊕H(W) = dS ⊕H(W). In more detail,

a key-value store is encoded using two sets: a read-set RS
and a write-set WS. These sets contain (key, value, timestamp)
tuples for every operation on the store. Neither the prover nor

the verifier materializes these sets in full; they only operate

on them using the corresponding digest (which we illustrate

below). Thus, the verifier’s digest of the key-value store is:

struct KVDigest {
SetDigest rs; // a set-digest of RS
SetDigest ws; // a set-digest of WS

}

Example. If the key-value store is empty, rs = ws = H({}).
Suppose the prover executes a program Ψ that invokes

insert(k, v), it is forced to return an updated KVDigest such

that the following holds (this is done by translating insert
into appropriate constraints, as in the GetBlock example):

rs = H({}), ws = H({(k, v, 1)}).
Now, suppose the prover executes Ψ′ that invokes get(k),

which should return a value v and update the timestamp associ-

ated of the tuple. To explain how KVDigest is updated, there

are two cases to consider. First, suppose the prover behaves

and returns v that was previously stored by insert(k, v),
then: rs = H({(k, v, 1)}), ws = H({(k, v, 1), (k, v, 2)}).

A key invariant here is that whenever the prover maintains

the key-value store correctly, the set underneath rs is a subset

of the set underneath ws. To illustrate the invariant further,

consider the second case where the prover returns v′ �= v (for

get(k)), then the set-digests returned by the prover will be:

rs = H({(k, v′, 1)}), ws = H({(k, v, 1), (k, v′, 2)}).
Observe that the set underneath rs is not a subset of the

set underneath ws. However, the verifier cannot not detect

this (since set-digests have no structure to check the subset

property). Instead, the verifier requires the prover to produce a

special proof πaudit periodically (e.g., for a sequence of inputs

x1, . . . xn) that proves the set underneath rs is a subset of the

set underneath ws. To do so, the prover’s πaudit proves:

∃{(ki, vi, tsi)} : ws 	 rs = H({(ki, vi, tsi)}) ∧ ∀i, ki < ki+1,

where 	 is the inverse of ⊕ (i.e., it results in removal of

elements from a set underneath the digest). This difference is

a set as the ki are distinct. An honest prover takes {(ki, vi, tsi)}
to be all key-value-timestamp tuples in its current state.

To produce πaudit, the prover incurs costs linear in the num-

ber of key-value tuples, but the linear cost is amortized over

all transactions processed within the epoch, and the proof pro-

duced by the prover is π = (πx1
, . . . ,πxn ,πaudit). Finally, as

an optimization atop Spice [73], we observe that the verifier

only needs to track a single set-digest d = ws 	 rs.

3 Design
This section describes the design of Piperine. We begin with

an overview of Piperine and then delve into its details.

Overview of Piperine. Piperine provides a generic mecha-

nism to transform a replicated state machine (RSM) R into

another RSM R′—while retaining the safety and liveness

properties of R. To explain how Piperine realizes this trans-

formation, we start with a brief review of RSMs. Recall that

an RSM is a methodology to transform a state machine M
into a distributed computation running on a set of nodes such

that the distributed computation emulates a safe and live S
(under certain operating conditions about nodes, such as fault

thresholds, and the network connecting them).

In the context of an RSM, the safety property is that non-

faulty nodes progress through the same sequence of state

transitions; the liveness property is that non-faulty nodes can

eventually execute a state transition [55]. An RSM can have

one or more safety and liveness properties and Piperine is

oblivious to the specific properties (in other words, Piperine

simply preserves the safety and liveness properties of the

underlying RSM R in the transformed RSM R′).
Constructing R′. To construct R′ for a given R that repli-

cates a state machine M, the high level recipe is as follows.

First, Piperine splits M into a preprocessing phase and a state

machine: the prover and the verifier respectively (by employ-

ing the verifiable state machine primitive from Section 2).

The prover processes inputs (i.e., transactions) for S and

transforms them into inputs for the verifier. The prover is fully

untrusted and maintains no private state, so the transactions

can be processed by any party on any untrusted infrastructure.

More concretely, a transaction can be processed by the client

that creates it, the RSM node that first receives it, or a third

party; the choice is arbitrary and the choice can be made for

each transaction independently, so our transformation does

not incur any loss of decentralization. Such flexibility exists

because the prover in Piperine is untrusted, by design, not

only for safety but also for liveness.

Finally, nodes in the original RSM then replicate the

verifier—instead of S—using R. Thus, R′ is an RSM that

replicates the verifier and processes transformed inputs and

proofs from the prover. Below, we provide an overview of

mechanics behind this instantiation and then provide intuition

for why R′ inherits any safety and liveness properties of R.

Overview of mechanics. Figure 1 summarizes the prover

and the verifier machinery that Piperine uses.

In Piperine’s context, a state machine M is specified with

(Ψ,S0), where Ψ is a program that encodes state machine

transitions and S0 is the initial state of the machine. When

P is given a state S of S and a transaction x (S = S0 at

beginning of time), it produces:

• The output y, a digest d′ of the new state S ′, and a proof

π = (πx,πaudit).

• A succinct representation Δ of the difference between S
and S ′, and a proof πΔ that this difference is consistent

with the old and new digests d, d′.

For efficiency, πaudit and πΔ are produced by the prover

after processing a batch of transactions. For ease of exposition,

we include it with every transaction x (we relax this in (§3.3)).

V begins with a copy of S as well as its digest d. When V
is given as input a tuple (x, y, d′,π,Δ,πΔ) produced by the

prover, it runs the local checks of Section 2, and in addition

checks that πΔ proves that Δ represents the correct difference

between states whose digests match d, d′. If these checks pass,

V applies Δ to S to obtain S ′.

Safety and liveness intuition. The verifier’s initial state is

the initial state of the state machine S0 and a digest of

that state d. Since Piperine runs V as a state machine that

is replicated by RSM R and since R is safe, the verifier

running at each node will only transition to a new state if

(x, y, d′,π,Δ,πΔ) pass the verifier’s local checks. From the

completeness and soundness properties of the underlying ver-

ifiable state machine, this happens only if y is a correct output

for the transaction x and d′ is the digest of the state after

executing x. Furthermore, the verifier running at each node

obtains a correct copy of the updated state using Δ. Thus, R′

is both safe and live as long as R is safe and live. The only ad-

ditional assumption in R′ compared to R is the cryptographic

hardness assumptions made by verifiable state machines. We

make this intuition more formal later (§3.3).

RSMs with an open membership model. In RSMs with

an open membership model such as blockchains, ensuring

liveness means that a new node joining the system must be

able to start with the initial state S0 and incrementally update

it using publicly available sequence of transformed inputs

until it reaches the up-to-date state S ′. In other words, the

transformed inputs must be available to any new node as part

of the blockchain. We provide more details when we apply

Piperine to reduce per-transaction costs of Ethereum (§4).

3.1 Ensuring liveness

The usual way for nodes in RSMs to keep their state up-to-

date is to reexecute transitions on all the submitted inputs

that have been agreed upon by the replicated system. Because

nodes in Piperine avoid such reexecution, the verifier running

at each node in the transformed RSM must be able to recover

a correct state S ′ with a digest d′ from S and Δ. Furthermore,

this must be efficient both for V and P . As we illustrate via a

series of straw-man solutions below, this is non-trivial due to

࣭, ࣸ
key-
value
Store

ݔ
get

putݔ, ,ݕ ࣸᇱ, ݔߨ
࣪Ψ

ΔΔ, ୼ߨ verify ࣸ, ࣸᇱ, Δ
consistent

if ݔߨ, ,ୟ୳ୢ୧୲ߨ ୼ߨ
pass checks:࣭ ← ࣭ + Δࣸ ← ࣸ′

ࣰ
state:

ΨΔ
Ψaudit state ݐ݅݀ݑܽߨ′࣭

FIGURE 1—Overview of Piperine’s proof machinery; our extensions

are depicted with dotted components. To apply this to RSMs, instead

of running a state machine, each node in an RSM runs the verifier,

which verifies proofs and state changes produced by an untrusted

prover who verifiably executes the designated state machine.

the requirements on computational efficiency, bandwidth re-

quirements, and a desire to execute transactions concurrently.

Straw-man #1. The prover could set Δ = S ′ and have πΔ

prove that H(Δ) = d′. Collision resistance of H ensures

that S ′ is correct if the digests match, and the proof shows

that the digest is computed correctly. The verifier running

at each node performs checks as above, and if they pass, it

overwrites its local state with Δ. Unfortunately, this approach

incurs unacceptable network and computational costs. Having

Δ = S ′ means that the prover would need to send its whole

state over the network for each batch of state transitions, and

that the verifier (running at each node in an RSM) would need

to incur costs linear in the size of S ′.

Straw-man #2. The prover could augment the proof πx to

output the state changes (i.e. a list of updated key-value pairs)

caused by executing the transaction x. The verifier could then

apply those state changes. However, for efficiency, Piperine’s

base operates in a setting where it produces πaudit after execut-

ing a set of transactions (§2). As a result, the prover does not

materialize a concrete ordering of transactions, but merely

proves that one exists. So a malicious prover can violate safety

by providing a different ordering to the verifier(s) than the

one it used internally. A solution is to make the prover’s exe-

cution verifiably deterministic, but it is not entirely clear how

to achieve this—without incurring substantial costs.

Additionally, the network traffic is proportional to the sum

of the count of state changes in each transaction processed

by the prover—rather than the overall state change from S
to S ′. In workloads where a part of the state is updated by

many transactions, the network traffic includes each of those

changes, instead of just the final values, which is sub-optimal.

Our solution. Piperine’s prover sets Δ to be a minimal set

of writes needed to take S to S ′, and directly proves that:

∃S : d = H(S) ∧ d′ = H(Apply(S ,Δ)).

Clearly, this approach is efficient for V , as the number of

changes to make it to progress from S to S ′ is the minimal

1: function delta(d, d′,Δ)

2: sum ← H({})
3: for (k, vΔ, tΔ) in Δ do
4: exists, vδ , tδ ← RPC(GETOLDVALUE, k)
5: sum ← sum ⊕H({(k, vΔ, tΔ)})
6: if exists then
7: sum ← sum �H({(k, vδ , tδ)})
8: assert(sum = d′ � d)

FIGURE 2—The description of ΨΔ, a computation that the prover

runs to prove that its purported state changes are correct.

possible. To explain how we make it efficient for P to generate

this proof, it is necessary to unpack the details of how a key-

value store is supported in Spice [73].

Details. Recall that Piperine’s base machinery employs

an incremental hash function H(·) for sets to implement a

key-value store K. Let WS, RS be the sets of all writes and

reads to K at the end of the last epoch (i.e., at the time the last

πaudit was produced and verified). Note that neither the prover

nor the verifier explicitly materializes these sets. A correct

prover simply maintains K’s current state S , and the verifier

maintains a single set-digest d. Furthermore, at the end of an

epoch, the invariant is that S = WS − RS and H(S) = d.

Now, in the next epoch, when the prover executes a trans-

action x, it sends to the verifier, as part of πx, the difference

δx = H(WSx)−H(RSx), where WSx, RSx are the set of writes

and reads required to execute x. From these, the verifier com-

putes d′ = H(WS′)	H(RS′) = d ⊕ δx, where WS′, RS′ are

the sets of all writes and reads after executing x.

We now make a few new observations. If the verifier tracks

both d and d′, there are sets S, S′ such that H(S) = d ∧
H(S′) = d′. Concretely, S = WS − RS and S′ = WS′ − RS′.
Define the sets A = S′ − S and B = S − S′, and observe that

S′ − S = A − B. Furthermore, observe that A is the minimal

set of writes that must be applied to S to get S ′, and B is

the set of stale writes that A overwrites. This opens up the

following solution for the verifier to efficiently receive and

verify state changes from the prover.

Piperine’s prover sets Δ = A, which is minimal (as noted

above). Furthermore, Piperine’s prover proves that ∃B, a set

writes to a subset of the state written to by A and that the

following condition holds: d′	d = H(A)	H(B). Piperine’s

prover proves this efficiently by adapting techniques used to

efficiently produce πaudit. More concretely, the prover proves

the correct execution of the program, ΨΔ (depicted in Fig-

ure 2). ΨΔ takes as public input two digests of state d, d′,
and purported set of writes Δ, and takes as non-deterministic

input a set of overwritten values. It then checks that these state

changes are consistent with the updated digest. The verifier

simply verifies the proof of correct execution of ΨΔ (i.e., πΔ)

and applies the claimed state changes to its local state.

3.2 Reducing concrete costs

We make a number of additional changes to Piperine’s base

machinery to reduce the verifier’s and prover’s costs.

Replacing exponentiations with hashing. In the proof ma-

chinery that Piperine uses (§2), the cost of verifying a proof

for a computation Ψ scales in the number of inputs and out-

puts of the computation, but not in the computation com-

plexity of Ψ. Concretely, each additional input or output re-

quires the verifier to do one additional modular exponentia-

tion. There is also a fixed cost of three pairing computations.

It is desirable to minimize the number of explicit inputs

and outputs that a computation has (whilst retaining safety).

We apply a prior idea [24] in our context: we observe that

GetBlock and PutBlock primitives from Section 2 enable

any block of data for which V knows a digest to be referenced

by a short cryptographically-binding name in a verifiable

way. Specifically, Piperine replaces the inputs and outputs of

computations with their short cryptographic digests and have

the verifier separately verify the correctness of cryptographic

digests using their full inputs and outputs. Schematically,

Piperine transforms a computation y = f (x) into:

Digest f_wrapped(Digest in_d) {
x = GetBlock(in_d);
y = f(x);
return PutBlock(y);

}

P proves correct execution of fwrapped, and additionally

sends x and y to V . As part of its local checks, V ensures that

the digests passing in and out of fwrapped correspond to x, y.

For V , this replaces a multi-exponentiation of size O(|x|+ |y|)
with hash operations that compute with O(|x|+ |y|) data.

Choice of the hash function. The remaining question is

how to implement the hashing. Clearly, for the verifier to gain,

the hash function must be cheaper than exponentiation. A

standard hash function (e.g., SHA-256) would be optimal in

this case. However, the prover must compute digests inside

constraints (as part of GetBlock), and executing a typical

hash function would incur ≈ 800 constraints per byte.

This cost is partially addressed in prior work [17, 24, 43,

73] where the GetBlock/PutBlock primitives are based on

the Ajtai’s hash function [6], which costs ≈ 10 constraints per

byte. In Piperine, we use the MiMC-based hash function [8]

(used in Spice [73] for a different purpose), which costs ≈ 5

constraints per byte.

Efficient signature verification. The cost of proof genera-

tion in Piperine’s proof machinery is primarily due to FFTs

and multi-exponentiations whose size is given by the number

of constraints. So reducing the number of constraints used to

represent a computation reduces prover costs. In our target

state machines, most constraints are used to implement cryp-

tographic operations, such as digital signature verification.

Common digital signature algorithms compute over a group

where the discrete logarithm problem is hard. These groups in

turn require arithmetic over large finite fields. A prior idea [17,

35, 73] to make this efficient is to ensure that the field over

which digital signature is computed is the same field used by

our algebraic constraints. Thus, we select digital signatures on

an elliptic curve over the field Fp of our algebraic constraints.

There are, however, many elliptic curves over Fp. We

choose a Twisted Edwards curve [19] to avoid branching
when computing a point addition. This is because the con-

straints formalism necessitates executing all branches, which

increases costs. Specifically, we use the curve E : 634670x2 +
y2 = 1 + 634650x2y2, which is birationally equivalent to the

twist of the C∅C∅ curve [19, 53], of size N = |E| ≈ p/4.

We fix a base point G, and construct ECDSA signatures

over E using the MiMC-based hash discussed above. A public

key is a point P ∈ E , and a signature on a message m is a

pair r, t ∈ [0, N). Verifying a signature requires computing

h := hash(m), r′ := (ht)P + (rt)G = t(hP + rG), and

checking that r is the x-coordinate of r′.
The most straightforward way to compute r′ is to compute

hP and rG with a double-and-add algorithm, add these points,

and then multiply by t (again with double-and-add). We now

discuss a series of optimizations. These optimizations are

somewhat standard in the context of high-speed cryptographic

libraries designed to run on a hardware platform such as x86.
Our innovation is in a careful selection and application of

those optimizations for code compiled to constraints. For

context, although the constraints formalism is as general as

x86, it has a completely different cost model for different

operations (e.g. bitwise operations are orders of magnitude

more expensive than 256-bit modular multiplications).

Optimizations. First, we combine the computation of

hP + rG into a single loop of doubling and adding one of

{0, P, G, P + G}; this optimization is called double-scalar
multiplication, a special case of multiexponentiation [62].

Second, we apply the above idea to a single scalar mul-

tiplication of a point Q; instead of repeatedly doubling and

adding one of {0, Q}, we repeatedly quadruple and add one

of {0, Q, 2Q, 3Q}. This optimization is called 2-bit window-
ing, a special case left-to-right k-ary exponentiation [62]. In

general, we can use larger windows, where the number of

possible summands becomes some 2w > 4. However, in con-

straints, one must encode the selection operation with ∼ 2w

constraints, so w > 2 does not improve further.

Our final and most involved change is to compute ht and

rt mod N, which replaces one point multiplication with two

multiplications mod N. However, N �= p, and since N2 � p
this multiplication will overflow if performed naively. We

address this as follows. Given an x, y to multiply, there is

some a such that xy − aN ∈ [0, N). To compute this, we

express x, y, a, N in base B = 286, where each of x, y, a, N has

at most three digits. We then use long multiplication (base B)

to express the product as the sum of products of the digits,

shifted by powers of B. We collect the terms that have been

shifted by a common power of B for both xy and −aN. Each

aggregated term is in (−3B2, 3B2). So xy − aN is expressed

as a sum of values of modulus < 3B2, shifted by powers of B.

Since B2 = 2172 � p/6, these sums can be computed

exactly modulo p. So we can combine the values (shifted by

powers of B) to find xy − aN, checking that no overflow will

occur. To do this, we accumulate the most significant parts of

the product, multiplying by powers of B only after checking

that the accumulator is below p/B.

Section 6.1 evaluates these optimizations.

Batching. The prover executes a batch of transactions and

provides a proof of correct execution for the batch as a whole.

The verifier verifies a single proof for the entire batch, thereby

amortizing the fixed costs of verification over the entire batch.

The prover also amortizes the linear cost of producing πaudit

and πΔ over the entire batch of transactions.

Finally, note that producing πaudit and πΔ requires comput-

ing over the entire state S and the state changes Δ. Building

on Spice [73], we structure these computations as a MapRe-

duce job where each mapper and reducer operates on fixed-

sized chunk of data (this permits the use of a one-time trusted

setup for proof machinery regardless of the size of the prover’s

state; §8). However, different from Spice, Piperine’s prover

does not prove the execution of reducers, but instead the

verifier executes reducers. This is because the reducer’s com-

putation (elliptic curve point additions, equality checks, etc.)

is not worthwhile to be outsourced to the prover.

3.3 Correctness proofs

Recall that safety and liveness properties are properties of se-

quences of states which, respectively, are closed under taking

prefixes, or can be preserved under extension [55].

Given an RSM R that replicates a state machine M, Piper-

ine constructs an RSM R′, which includes: (i) Piperine’s

prover; and (ii) R that replicates Piperine’s verifier. We now

prove that any safety or liveness property that holds in R for

all state machines is preserved in R′ for all state machines—

except for an error probability of O(ε), where ε is negligible

in the security parameter and is set to 1/2128 in practice. In

more detail, the verifier that is replicated in R′ (say M′) is

a state machine with state (S, d). The transition function of

M′ takes as input a tuple (�y, d′,π,Δ,πΔ), and executes:

1. Assert(Verify(π, d, d′,�y) ∧ Verify(πΔ, d, d′,Δ)).

2. (S , d) ← (S ′, d′) where S ′ = Apply(S ,Δ), output y.

Since we allow a probability O(ε) of error, we can con-

dition on events of probability ≥ 1 − ε. In particular, we

condition on Verify returning false if P does not possess

non-deterministic choices such that the claimed outputs cor-

rect, and the prover knowing no collisions in H(·). Then:

Verify(π, d, d′,�y) =⇒ ∃σ ∈ Sym(n), x1, . . . xn,S0 . . .Sn :

H(S0) = d ∧H(Sn) = d′ (1)

∧i=1...n Ψ(Si−1, xσ(i)) = (Si, yσ(i))

Verify(πΔ, d, d′,Δ) =⇒ ∃δ : keys(δ) ⊆ keys(Δ)

∧H(Δ)	H(δ) = d′ 	 d
(2)

Lemma 3.1. For a state machine M with transition function
Ψ and initial state S0 = S (where d = H(S)), given inputs�x,
an honest prover can produce a tuple (�y, d′,π,Δ,πΔ) such
that the state machine M′ with current state (S , d) transitions
to (Apply(S ,Δ), d′) and outputs�y.

Proof. By the completeness of the underlying VSM, an hon-

est prover on inputs�x and state S can compute the new state

S ′, outputs yi, and state changes Δ such that d := H(S),
d′ := H(S ′), and π,πΔ pass their verification checks, which

causes M′ in state (S, d) to transition to (Apply(S,Δ), d′)
and output�y.

Lemma 3.2. If M′ is in state (S, d) with d = H(S), and
transitions to a state (S ′, d′) with outputs�y, then with proba-
bility ≥ 1−O(ε): (1) d′ = H(S ′), and (2) ∃�x : M transitions
S → S ′ on inputs�x, outputting�y in some order.

Proof. If M′ transitions, both Verify checks return true. So

(ignoring an O(ε) probability of failure) the prover knows

σ, {xi}i=1...n, {Si}i=0...n and δ.

From the collision resistance of H(·), S = S0, Sn − S0 =
Δ − δ. Since keys(Δ) ⊇ keys(δ), Sn = Apply(S0,Δ), and

so S ′ = Sn, implying d′ = H(S ′). Then from Equation 1,

M transitions S → S ′ on inputs xσ(i), outputting yσ(i).

Theorem 3.1. If R maintains a safety property on M′, then
R′ maintains this safety property on M except for an error
probability of O(ε).

Proof. By Lemma 3.2, M′ can only transition from (S , d) to

(S ′, d′) outputting�y if M can have a sequence of transitions

from S to S ′ outputting�y. So any sequence of states (Si, di)
with outputs �y of M′ projects down to a sub-sequence of a

sequence of states S with outputs�y of M.

Taking prefixes of a sequence commutes with this projec-

tion. Furthermore, A is a sub-sequence of a prefix of B if and

only if A is a prefix of a sub-sequence of B. So if R maintains

some safety property on M′, then R′ preserves it on M.

Corollary 3.1. If R maintains a safety property S for all
state machines, then R′ maintains S for all state machines,
excepting an error probability O(ε).

Theorem 3.2. If R applied to M maintains a liveness prop-
erty, then R′ applied to M maintains this liveness property.

Proof. Any states S of M can be extended to a state (S, d)
for M′, by setting d = H(S). If R maintains some liveness

property L on M, any sequence of states for M satisfying L
can be extended indefinitely maintaining L.

A sequence of states of M′ project to a sub-sequence of

a sequence of states of M. If this sequence of states of M
satisfy L, then it may be extended by inputs�x maintaining L.

Given inputs �x causing M to transition from S to S ′ out-

putting�y, the prover can compute a (�y, d′,π,Δ,πΔ) causing

M′ to transition from (S,H(S)) to (S ′,H(S ′)) and output

�y (Lemma 3.1). So the sequence of states of M′ may be

extended maintaining L, and R′ maintains L.

Corollary 3.2. If R maintains a liveness property L for all
state machines, then R′ maintains L for all state machines.

4 Applying Piperine to Ethereum
We discuss how Piperine enhances Ethereum, starting with a

primer on the base system.

A primer on Ethereum. Ethereum is a blockchain network

that instantiates a large-scale RSM. In Ethereum, state con-

sists of a set of accounts, each of which possesses a balance in

a currency (ether). Optionally, each account can possess byte-

code written for the Ethereum Virtual Machine (EVM) and

internal persistent storage. Such bytecode is called a smart
contract and can be deployed to an account by a developer;

this facility can be used to implement decentralized applica-

tions such as payment services, games, auctions, etc. State

transitions (also known as transactions) in Ethereum consist

of transfers of balances between accounts, deploying new

smart contracts, and calls to methods exposed by smart con-

tracts (which in turn can make calls to other smart contracts).

Nodes in the Ethereum network reach consensus on an

append-only ledger of blocks containing transactions. The

execution of transactions is replicated across the network, i.e.,

each node executes every transaction in the ledger.

Each operation supported by the EVM is assigned a

complexity-based cost in a currency called gas, which is

derived from ether and hence fungible in USD (§6.3). For

example, the cost of executing arithmetic operations or read-

ing transaction data inside a contract is in single digits of

gas, whilst the cost of updating state or calling a contract is

many thousands of gas [86]. When a transaction invokes a

method exposed by a smart contract, the call is supplied by its

caller with some amount of gas, and each operation consumes

gas from this supply. If the execution of the smart-contract

call requires more gas than is supplied, the execution termi-

nates. This policy bounds the computational resources that

nodes in the network must expend to execute state transitions

in Ethereum; this is a key mechanism to prevent denial of

service attacks. The gas consumption of all smart contract

calls in a block is the block size, which is currently capped by

Ethereum to ≈ 8 · 106 and is routinely saturated in practice.

Enhancing Ethereum with Piperine. Piperine enhances

Ethereum at the level of an application. While the enhance-

ment requires several changes to the execution logic of the

application, these changes do not require any modification

to the underlying Ethereum mechanisms and can be applied

transparently. Specifically, instead of specifying the applica-

tion as an on-chain smart contract, developers implement it

off-chain as a program Ψ using Piperine’s toolchain. Clients

who wish to invoke the application submit their transactions

to a Piperine prover. The prover accumulates transactions,

executes them in batches, and produces proofs that are then

sent to a verifier. The verifier is implemented as a smart con-

tract that runs natively on Ethereum. The verifier contract is

generic to Ψ and implements the verification of proofs, the ag-

gregation of changes to the state digests, and the verification

of the purported state changes. As the verifier keeps track of

the application state and incorporates cryptographic material

for proof verification, it is deployed on a per-application basis.

All inputs processed by the verifier are recorded on-chain

since the prover invokes the verifier by submitting a regular

Ethereum transaction with these inputs as arguments.

Deployment and fault-tolerance. Recall from Section 3

that Piperine’s prover is untrusted for both safety and live-

ness. Thus, the prover can run on any untrusted infrastructure.

Furthermore, the prover has no private state, and all state

necessary to instantiate a new prover is persistently recorded

on-chain (in blockchain terms, there are no “data availability”

issues). Hence, any entity (a client, a miner, or a third-party

service) can act as a prover at any point—without requiring

coordination with any other instance of a prover that might

exist in the system.2 There can theoretically be an unlimited

number of provers per application (e.g., each miner can be-

come a prover for an application of its choice). In practice,

an efficient deployment option is for the prover to be offered

as a commercial service that provides decentralized applica-

tions with reduced per-transaction costs—without giving up

the benefits of decentralization. In our experiments (§6), we

deploy the prover on a cluster of machines in the cloud.

Bootstrapping and interoperability. We facilitate inter-

operability between Piperine-enhanced applications and na-

tive smart contracts. As an example, in the context of an

ERC-20 token [79], the main requirements are that clients

can bootstrap account balances by sending currency to the

smart contract, and can withdraw their funds unilaterally—

without trusting any prover. To support this, the smart contract

implementing the verifier keeps a list of pending payments to

and from the Piperine-enhanced token. When clients wish to

bootstrap a balance, they use a traditional ERC-20 transaction

to send funds to the verifier contract. The verifier contract

adds the hash of this transaction to the list of pending pay-

ments to the token. When the prover wishes to issue currency

to an account on its state, it releases a transaction hash to the

verifier, which rejects the state transition if the hash is not

present in the pending list. If not, it updates the pending list

to prevent a prover from double issuance.

Similarly, to withdraw funds, the prover executes a trans-

action that burns tokens in the Piperine-managed state and

whose public outputs direct the smart contract to approve

a token withdrawal, which can be collected by an ERC-20

2An alternate option is to obtain a snapshot of the state from another node.

In this case, if the snapshot is incorrect, proofs produced by the new prover

will not be accepted by the verifier on-chain due Piperine’s safety properties.

transaction. Since any party can act as the Piperine prover, any

party can unilaterally withdraw funds by producing proofs of

execution for such a burn transaction and can then transition

state on the on-chain verifier smart contract.

Status checks. Piperine’s prover sends a hash of each ex-

ecuted transaction to the chain as part of inputs to the veri-

fier. As a corollary, any client (or a new prover) can check

whether some transaction has already been executed by check-

ing whether the hash of their transaction has appeared as an

input to the Piperine verifier contract.

Choice of an elliptic curve. For efficiency, Piperine uses a

different elliptic curve for ECDSA signatures than Ethereum.

Thus, transactions generated for a Piperine-enhanced appli-

cation cannot be sent directly to the Ethereum chain.3 The

above interoperability mechanism alleviates this constraint

by enabling currency transfers from ether to per-application

tokens and vice versa. Moreover, the use of cryptographic

primitives that are friendly to proof machinery is often an

acceptable optimization in practice [4, 34, 85].

Details of the verifier running as a smart contract. To

implement the logic of the verifier, we need to build three

high-level primitives: a primitive to verify proofs produced by

the proof machinery, the MiMC hash function, and functions

to update set-digests with deltas. By default, the EVM

provides basic elliptic-curve point addition (150 gas) and

scalar multiplication (6,000 gas), in the form of precompiled

contracts (i.e., as libraries). Using these library operations,

we implement a primitive that can verify proofs produced

by the proof machinery. In our implementation, verifying a

single proof of a computation costs ≈ 201,000+ 6,150 · I gas

where I is a number of inputs and outputs to the computation.

Observe that the cost of verifying a proof is independent of

the complexity of the computation for which the proof is pro-

duced. Furthermore, our design limits the size of inputs and

outputs of a computation using GetBlock/PutBlock APIs,

so I is a constant in our context. However, the verifier incurs

a cost linear in the number of hash operations, as it uses the

block store optimization (which, recall, replaces exponentia-

tions with hash operations). In our context, the hash function

is MiMC, which we implement using the EVM’s primitive

modulo operations along with custom assembly. The resulting

cost of a hash operation is ≈ 200 gas/byte. Our functions to

update set-digests are implemented directly with mulmod and

addmod, directly ported from the C implementation.

5 Implementation
We build Piperine atop Spice [73], which provides a compiler

from a subset of C augmented with storage primitives to

algebraic constraints. For producing succinct cryptographic

proofs, it invokes libsnark [57], an implementation of a

state-of-the-art proof machinery [47]. We extend Spice with

techniques described in Section 3 including ΨΔ, a high-speed

3The curve is defined in Section 3.2, and has parameters of similar size to

Ethereum’s secp256k1, so it provides a similar security.

struct Txn {
int type; // Type of the transaction
Pk pk_c, pk_r; // Public keys: caller, recipient
int v; // Amount of currency
int sig; // Signature on the transaction

}
struct Delta // Delta to set-digest
struct Account { int balance };
static PK organiser;
// creates currency
Delta create(Txn txn) {
Delta d; Account recipient;
// Check the type of transaction and signature
assert(txn.type == CREATE);
assert(verify_sig(txn.pk_c, txn, txn.sig))
// Only the organiser can create tokens
assert(txn.pk_c == organiser)
// Lock and read account of txn.pk_c, update d
beg_txn(&d, [txn.pk_r], [&recipient]);
recipient.balance += txn.v;
// Write and unlock account, update d
end_txn(&d, [txn.pk_c], [recipient]);
return d;

}
// transfers currency between accounts
Delta transfer(Txn txn) {
Delta d; Account caller, recipient;
// Check the type of transaction and signature
assert(txn.type == TRANSFER);
assert(verify_sig(txn.pk_c, h, txn.sig))
// Lock and read account of txn.pk_c, txn.pk_r, update d
beg_txn(&d, [txn.pk_c, txn.pk_r], [&caller, &recipient]);
if (caller.balance >= txn.v && txn.v >= 0) {
caller.balance -= txn.v;
recipient.balance += txn.v;

}
// Write and unlock accounts, update d
end_txn(&d, [txn.pk_c, txn.pk_r], [caller, recipient]);
return d;

}

FIGURE 3—Pseudocode for ERC-20’s create and transfer op-

erations using Piperine’s API. We abstract details of the use of block

store and internal details of signature verification. Other ERC-20

operations are programmed similarly.

library for signature verification, etc. This adds about 375

SLOC to Spice. We implement the additional portions of

Piperine’s verifier (§3.2; batching paragraph) in Python, along

with orchestration for execution on our cluster, in about 725

lines of Python. This code parallelizes the prover’s work

(executing transactions, producing proofs, etc.).

To demonstrate Piperine in action, we implement a pay-

ment processing service with a standardized interface (called

an ERC-20 token [79]) using 380 lines of C. Although we

implement our approach for only one contract, ERC-20 is a

popular standardized interface for contracts, whose implemen-

tations account for over 50% of transactions on Ethereum [33].

Figure 3 depicts pseudocode for various state transitions

in the payment state machine. The main transaction is the

transfer, which moves fungible tokens between two ac-

counts. To apply Piperine to Ethereum, we implement the

verifier as a smart contract in Solidity, a language for writ-

ing state machines. In particular, we implement machinery

for verifying cryptographic proofs (which builds on an open-

source library [70] for elliptic curve pairings) and the MiMC

hash function in 500 lines of Solidity.

6 Evaluation

Our experimental evaluation of Piperine answers the follow-

ing questions:

1. What are the benefits of Piperine’s techniques on end-to-

end costs of the prover and the verifier in VSMs?

2. What are the regimes in which delegation via verifiable

state machines is better than local reexecution?

3. Does Piperine reduce costs in large-scale RSMs?

Methodology and baselines. We report our results in the

context of a state machine for processing payment transac-

tions (§5). To answer the first question, we measure the impact

of our refinements (described in §3) on the prover’s and veri-

fier’s CPU costs. To answer the second question, we consider

a baseline state machine that executes the above state ma-

chine’s payment transactions by just authenticating them (i.e.,

it does not execute transitions in entirety, which is pessimistic

to Piperine). We implement the optimistic baseline using

libsodium [38], a high-speed cryptographic library. We re-

port the per-transaction costs in terms of CPU and network

costs for a system with and without Piperine.

To answer the last question, we compare Piperine-enhanced

Ethereum to native Ethereum, in both cases implementing the

above state machine. For this, we report end-to-end costs of

the two variants by using a unified metric (that accounts for

network, storage, and CPU costs). We also report the size of

a transaction in bytes in both cases.

Setup. We use a cluster of Azure D64s v3 instances (32

physical cores, 2.30 GHz Intel Xeon E5-2673 v4, 256 GB

RAM) running Ubuntu 18.04. We measure CPU-time for

the prover P and a verifier V . We run parallel instances of

P on as many physical cores as are available, and compute

totals across all instances. We restrict the native V to a single

physical core for ease of comparison to the baselines, which

are single-threaded in each case.

To compare to the ERC-20 baseline, we run Piperine

against a private instance of the Ethereum RSM, using the

Web3 Python library [3] for interaction and the Ganache

suite [2] for deployment. We measure gas consumption of the

verifier and the size in bytes of signed transactions using the

Web3 API. We measure CPU-time of the prover from the sys-

tem clock. Finally, we measure network costs by measuring

the number of bytes transmitted from Piperine’s prover to the

verifier (in case of Piperine) and by measuring the number of

bytes in a raw transaction (in case of our baselines).

 0

 20

 40

 60

 80

 100

 120

212 214 216 218 220 222

Pr
ov

er
 ti

m
e

(μ
s

/ c
on

st
ra

in
t)

Number of Constraints

FIGURE 4—Proof generation costs per constraint the number of con-

straints in a computation Ψ varies. The solid curve is 1150μs/ log(n),
suggested by the n/ log(n) cost of multi-exponentiation algorithms.

6.1 Benefits of Piperine’s techniques

To answer the first question, we first experimentally establish

that, in Piperine, the prover’s costs depend primarily on the

number of constraints. Thus, we can evaluate the benefits of

our signature optimization by measuring their impact on the

number of constraints generated.

The two principal costs to generate a proof for a com-

putation with n constraints in Piperine are several multi-

exponentiations of size n in a pairing-friendly elliptic curve

and an FFT of size n over the field of scalars [15, 18, 24,

47, 67, 81, 83]. Using standard algorithms, such a multi-

exponentiation takes O(n/ log n) time, whilst the FFT takes

O(n log n) time. For computations used in our evaluation,

we measure P’s CPU-time per constraint. Figure 4 depicts

our results that confirm that P’s CPU-time scales roughly as

O(n/ log n), which is consistent with the theoretical predic-

tion that the prover is bottlenecked by multiexponentiations.

This experiment also confirms the benefits of our batching

optimization (§3.2) on the prover’s costs.

Effect of signature optimizations. To examine the impact

of signature optimizations in Piperine, we measure the num-

ber of constraints needed for a transfer state transition (to

transfer currency from one account to another) over the course

of several rounds of optimization. This metric is directly pro-

duced as a part of the process of compiling transfer with

our toolchain. Figure 5 depicts our results. As can be seen,

these optimizations reduce the number of constraints by up

to 1000×. Our individual techniques reduce the number of

constraints required by ≈ 2× compared to a baseline depicted

on the second line. While the latter is a modest improvement,

it directly impacts the number of replicas needed to amortize

the prover’s costs, in the context of RSMs (so any refinement

to reduce the prover’s costs is valuable).

Effect of using a block store. To examine the impact of re-

placing modular exponentiations with hashing in Piperine, we

compile a state machine that performs transfer operations

at a range of batch sizes, with and without the optimization.

The batch size parameter does not impact the improvements,

so we report results for a batch size of 64 transactions. Fig-

of constraints

naive > 107

careful choice of cryptographic parameters 20414

+ double-scalar multiplication 17080

+ windowing 16451

+ mod N arithmetic 12574

+ limb optimization 11249

FIGURE 5—Cost of a transfer operation, in terms of number of

algebraic constraints, in Piperine with host of optimizations to the

signature verification algorithm. Each line depicts an optimization

atop its prior line and the resulting number of constraints.

prover (x86) verifier (x86) verifier (Eth)

(s / txn) (μs / txn) (gas / txn)

w/o block store 0.79 107 13241

w/ block store 0.84 104 9301

FIGURE 6—Effects of the block store optimization on the CPU

costs of the prover and the verifier (batch size is 64). The verifier on

Ethereum benefits significantly while slightly increasing the prover’s

costs. The verifier on x86 benefits only slightly (see text).

ure 6 depicts the per-transaction CPU costs for the prover and

the verifier; we also report gas required to execute the verifier

running as a smart contract on Ethereum. As can be seen, for

the Ethereum verifier, the costs are reduced by ≈ 3.3×, whilst

the cost for the prover does not increase substantially. The

verifier on x86 does not benefit from the optimization. This

is because the cost of multi-exponentiation is O(n/ log n),
whilst the cost of hashing for the block store is O(n) with a

smaller implied constant. However, for larger input sizes, we

expect the block store optimization to provide a benefit.

6.2 Benefits of Piperine for delegating state machines

We now assess the regimes in which it is cheaper to employ

delegation than naive reexecution in RSMs. Our focus here

is on resource costs (CPU and network costs) and cross-over

points (the number of replicas necessary to make the total

cost of the Piperine-enhanced RSM, including the prover’s

costs, to be cheaper than a baseline RSM).

We run Piperine and our baseline on a synthetic workload

of create and transfer operations, modeled on the trans-

action history of a popular ERC-20 token [25]. For Piperine,

we experiment with a range of batch sizes for transfer
and measure the per-transaction CPU costs to the prover and

the verifier, and to our baseline. We also measure the size

of a transaction (in bytes) processed by the replicated state

machine under Piperine and the baseline.

CPU costs and cross-over points. Figure 7 depicts the per-

transaction CPU costs of the prover, the verifier, and the

baseline for varying batch sizes. As expected, the baseline

CPU cost does not decrease with batch size whereas the

verifier benefits significantly from batching. Furthermore, for

batch sizes ≥ 64 the Piperine V has lower CPU costs than

batch size baseline verifier prover cross-over

(#txns) (μs/txn) (μs/txn) (s/txn) (#replicas)

1 120 3799 1.34 –

4 116 931 1.02 –

16 115 275 0.88 –

64 118 107 0.79 68365

256 118 63 0.78 14280

1024 117 42 0.75 10072

FIGURE 7—The per-transaction CPU cost of the prover, the verifier,

and the baseline with varying batch sizes. We also depict cross-

over points: the number of replicas needed to make the Piperine-

enhanced RSM (including the prover’s costs) to incur lower CPU

costs than a replicated baseline. The verifier benefits significantly

from batching while the prover’s gains are modest. Beyond batch

size of 64, Piperine-enhanced RSM is cheaper than the baseline.

batch size baseline Piperine savings

(#txns) (bytes) (bytes) (×)

1 224 588 –

4 224 259 –

16 224 147 1.5

64 224 132 1.7

256 224 129 1.7

1024 224 80 2.8

FIGURE 8—The per-transaction network costs of Piperine and the

baseline with varying batch sizes. At the largest batch size, the per-

transaction network costs to propagate a transaction to the replicated

system is 2.8× lower in Piperine than the baseline.

the baseline. At large batch sizes, the verifier’s CPU costs are

lower than that of the baseline by about 2.7×. Although the

prover’s CPU costs are ≈ 6,300–11,000× higher than that

of the baseline, there exists a cross-over point (in terms of

the number of replicas in an RSM) at which the CPU cost of

the prover and the replicated verifier is lower than the CPU

cost of the replicated baseline. With a batch size of 1024, the

cross-over point is about 10,000 replicas.

Network costs. Figure 8 depicts the size of a transaction

processed by the RSM in Piperine and the baseline. Beyond a

batch size of 16, Piperine always incurs lower network costs

than the baseline. This is because Piperine compresses each

transaction to a hash and a minimal specification of its impact

on the state. At a batch size of 1024, the savings are a factor

of 2.8, which can be significant in blockchains [36].

6.3 Benefits of Piperine for large-scale RSMs

To answer the third question, we run a set of experiments

similar to the previous subsection, except that we experiment

with the Piperine verifier running as a smart contract. Further-

more, instead of an optimistic baseline based on libsodium,
the baseline here is an ERC-20 smart contract [79].

End-to-end per-transaction costs in gas and USD. Be-

sides the metrics used in the last subsection (CPU costs,

network transfers, etc.), we use an additional metric—

Ethereum’s gas (§4)—that captures the end-to-end costs of

the prover and the verifier in a unified manner. Although the

prover runs on a cluster of machines in the cloud and billed

in USD for the total machine cost (CPU, network, storage,

etc.), the prover’s cost can be converted to gas because gas is

fungible in USD. It might seem that this conversion must be

done with care since the exchange rate between gas and USD

is highly volatile. Since 2017, the daily average price for 106

gas has varied between $0.80 and $100, with intra-day volatil-

ity of ≥ 10×. As shown below, perhaps surprisingly, picking

any rate in the above range does not significantly affect our

results. This is because the total cost of a Piperine-enhanced

ERC-20 contract is dominated by the verifier’s gas costs, so

the prover’s costs in USD (when converted to gas) do not

substantially affect the end-to-end costs of the system. Below,

we conservatively assume an exchange rate of $1 for 106 gas.

In this experiment, the prover processes about 0.5 million

ERC-20 transfer transactions (in batches where each batch

is of size 1,100 transactions). The prover then produces a

πaudit by performing a linear scan over the entire state, which

in our workload is about ≈ 175,000 key-value tuples (i.e.,

account balances); the prover uses a chunk size of 12,288

tuples to produce πaudit in parallel (§3.2). The prover also

produces a πΔ, which in our experiment emits the entire

state (the chunk size here is 450 state changes). We pick

these parameters to reduce the prover’s and verifier’s costs via

aggressive batching and to ensure that each of these proofs can

be verified with < 8·106 gas. We measure the prover’s time to

produce these proofs and state changes and then calculate the

total machine cost to run the prover. We also run the verifier

as a smart contract and measure the verifier’s costs, in terms

of gas, to verify these proofs and state changes.

Figure 9 depicts our results. The per-transaction gas costs

of Piperine’s verifier are lower than the baseline by ≈ 5.4×.

The USD cost of Piperine’s prover is ≈ 250× smaller than

the USD cost of Piperine’s verifier, so the 5.4× saving in gas

translates directly into a similar savings in USD terms.

Note that the prover’s cost to produce πaudit depends only

on the size of the state whereas the cost to process trans-

actions and to produce πΔ scale linearly in the number of

transactions. In the above experiment, πaudit is produced only

after processing 5 · 105 transactions, but on end-to-end per-

transaction costs, it accounts for only 0.09% and 0.03% of

the overall USD and network costs respectively, so producing

πaudit more frequently does not substantially affect our results.

Transaction sizes and network costs. As in the prior sub-

section, Piperine reduces the size of transactions by ≈ 2.7×.

We note that in Piperine the size of a transaction is dominated

by a single hash and the associated state changes, so it is

insensitive to the size of arguments to a smart contract’s API

or Ethereum’s digital signatures. Whereas, for an on-chain

contract in Ethereum, the size of transactions is dominated

by signatures and call arguments. Furthermore, as noted in

Section 4, Ethereum’s blocks are limited by the scarce supply

computation costs

instances prover verifier total network

(#) (s) (gas) (USD) (bytes)

batch Ψtransfer 512 677.79 5561726 $5.6 35888

chunk Ψaudit 15 605.93 293377 $0.33 720

chunk ΨΔ 389 60.67 6448764 $6.44 43856

Piperine (/txn) 0.67 9518 0.96¢ 62.9

baseline (/txn) 0 51668 5.17¢ 170

FIGURE 9—The costs of the prover, the verifier, and the baseline

along with network costs under Piperine and the baseline. As noted,

we assume 106 gas costs $1; the prover’s costs are based on a ma-

chine cost of 20.9¢/hour as reported by the cloud provider.

of gas, so Piperine’s reduction in per-transaction gas directly

translates to an increased number of transactions in each block

(improving Ethereum’s throughput). While Ethereum can

pack ≈ 150 ERC-20 transactions/block, Piperine-enhanced

ERC-20 can pack ≈ 850 transactions/block.

7 Related work
A set of works achieve higher throughput on blockchains by

changing the underlying consensus protocol, assumptions,

or guarantees. Bitcoin-NG [41] increases Bitcoin’s through-

put by using proof-of-work solely for leader election, whilst

enabling the leader to approve transactions at a higher rate.

However, this approach is vulnerable to double spending

in the short term by a non-rational malicious leader. Byz-

coin [50] strengthens Bitcoin-NG by electing a quorum of

nodes that in turn use PBFT [29], but it requires a super

majority of those elected nodes to be honest. Algorand [46]

selects a committee, as in Byzcoin, but using light-weight

verifiable random function, instead of proof-of-work. Un-

like Byzcoin, it assumes that the majority of currency in the

system is owned by honest nodes. The latter comes with its

own issues [42]. Instead of the randomized committee se-

lection, Arbitrum [48] allows parties to manually choose a

set of managers on a per-contract basis to monitor for cor-

rect execution. The blockchain accepts state transitions if

they are endorsed either by all the managers, or by one of

them and not disputed later. This requires active monitoring,

or trusting managers. A similar optimistic approach is fol-

lowed in other works [5, 44, 68, 78]. Other approaches for

accelerating blockchains include sharding [7, 51, 59, 84, 88],

multi-chaining [56, 77], off-chain state channels [39, 63], pay-

ment channels and networks [37, 60, 63, 69], and the use of

trusted execution environments [30, 58] (see a position pa-

per [36] for an overview). We highlight that Piperine operates

at a different level than these systems and can be used in

combination with any of them to further increase throughput

and achieve lower per-transaction costs.

Zerocash [14], Hawk [52], and Zexe [22] use proof ma-

chinery similar to Piperine’s, but they primarily focus on

privacy of transactions, rather than system scalability. Hawk

in particular relies on a manager to execute all the contract

computations and lacks mechanisms for state reconstruction,

which can lead to degraded performance and hindered live-

ness. Zerocash does not suffer from such liveness issues as it

does not rely on a manager (each user acts as a manager of

its own state) but supports only payment transactions. Zexe

extends Zerocash to support a richer model of offline com-

putation. Although, the on-chain cost of verifying a proof is

independent of the offline computation, it does not demon-

strate improved blockchain throughput or lower transaction

costs. Zether [28] offers privacy for amounts in a transaction

using commitments and range proofs. ZoKrates [40] offers

a programming toolchain similar to Piperine to support off-

blockchain computation with a verifier running on Ethereum.

However, ZoKrates does not provide a verifiable storage prim-

itive nor guarantees liveness for off-chain state.

Unlike a traditional blockchain that increases in size over

time, Coda [61] proposes a constant-sized blockchain that

maintains a single Merkle root of the current state, using

recursive proofs [17]. Unfortunately, Coda lacks key liveness

properties: one cannot recover state or update Merkle proofs

from the blockchain information alone.

In concurrent work, StarkDEX [12] and StarkPay [23] pro-

pose a solution that is similar in spirit, yet qualitatively dif-

ferent from Piperine. In these proposals, the verifier stores a

Merkle root of the state, and the prover transitions the ver-

ifier’s state by supplying a new Merkle root along with a

proof. This approach does not satisfy liveness as it lacks a

mechanism for an arbitrary entity to reconstruct the inter-

nal state of the system (i.e., the prover is trusted for data

availability). They allude to a future mechanism to “freeze”

the system when the prover fails, and in that circumstance,

clients can regain custody of their assets by providing suitable

Merkle proofs. However, for a client to construct such Merkle

proofs, the prover must be modified to produce a list of state

changes during transaction execution and those changes must

be persisted reliably (e.g., as in Piperine). In terms of mecha-

nisms, Piperine relies on the Groth16 proof system [47] for

proof generation and on set data structures for state, whereas

StarkDEX and StarkPay use zkSTARKs [13] and Merkle

trees, respectively. Prior performance reports [73, 82, 87]

show that both mechanisms employed by Piperine achieve

significantly lower costs for the prover.

Unlike Stark-based proposals, Rollup [1, 26, 27, 85], an

ongoing project in the Ethereum community to build an off-

chain payment service, does not suffer from aforementioned

liveness issues. However, like Stark-based proposals, it relies

on Merkle trees as a storage primitive whereas Piperine em-

ploys set data structures; the latter enables concurrent transac-

tion processing and cheaper storage operations (§2). Based on

prior performance reports [73], this means Piperine’s prover

is cheaper than Rollup’s prover by small constant factors to

several orders of magnitude (depending on the hash function

employed by Rollup). This gap widens for state machines that

are more complex than a payment service.

Very recently, Ozdemir et al. [65] describe a new storage

primitive based on set accumulators for building verifiable

state machines. Unlike Piperine’s set-based storage, it does

not require the prover to produce a periodic πaudit (§2). How-

ever, with their primitive, each storage operation requires a

higher number of algebraic constraints than Piperine (small

constant factors depending on the batch size).

8 Discussion
Trusted setup. Piperine employs a proof machinery [47]

that requires a trusted setup: a trusted party must create cryp-

tographic material that depends on Ψ but not on inputs or

outputs to Ψ. Such a trusted setup can be executed by a

set of parties in a distributed protocol where at most one

party needs to be honest [16]. Designing an efficient proof

machinery without trusted setup is a topic of ongoing re-

search [13, 31, 72, 82]; we plan to explore such a proof ma-

chinery in Piperine in the future.

Reducing the costs of the proof machinery further. In the

context of blockchains, we can drive down the cost of the

Piperine verifier further by using an inexpensive hash function

(e.g., SHA-256). However, as discussed earlier, this increases

the prover’s costs by orders of magnitude. But, one can reduce

the prover’s monetary costs using GPU clusters, or serverless

computing, which offer cheaper computing cycles per USD.

9 Summary
We began this project with the following question: can we

reduce end-to-end costs in large-scale replicated systems by

delegating state machine executions? Our system, Piperine,

offers an affirmative answer. Specifically, Piperine provides

a generic mechanism to reduce CPU and network costs of

a given RSM—under certain operating conditions about the

number of nodes and complexity of the delegated state ma-

chine. Furthermore, Piperine offers the first mechanism to

execute transactions concurrently in an RSM built under an

open, permissionless model. Finally, Piperine demonstrates

the first large-scale application of cryptographic proof ma-

chinery to reduce costs in a real-world system. As a result of

these, we believe this work represents progress.

Acknowledgments. We thank Sebastian Angel, Riad Wahby, and

the anonymous S&P reviewers for helpful comments that signifi-

cantly improved the presentation of this work. Part of this work was

performed during Kirill Nikitin’s internship at Microsoft Research.

References
[1] Ethereum Roadmap. ZK-Rollups.

https://docs.ethhub.io/ethereum-roadmap/layer-2-
scaling/zk-rollups/.

[2] Ganache. https://truffleframework.com/ganache.
[3] Web3.py.

https://web3py.readthedocs.io/en/stable/.

[4] STARK-friendly hash challenge.

https://starkware.co/hash-challenge/, Aug. 2019.

[5] J. Adler. Minimal viable merged consensus.

https://ethresear.ch/t/minimal-viable-merged-
consensus/5617, June 2019.

[6] M. Ajtai. Generating hard instances of lattice problems

(extended abstract). In Proceedings of the ACM Symposium
on Theory of Computing (STOC), pages 99–108, 1996.

[7] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and

G. Danezis. Chainspace: A sharded smart contracts platform.

In Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2018.

[8] M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen.

MiMC: Efficient encryption and cryptographic hashing with

minimal multiplicative complexity. In Proceedings of the
International Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT), 2016.

[9] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin,

K. Christidis, A. D. Caro, D. Enyeart, C. Ferris, G. Laventman,

Y. Manevich, S. Muralidharan, C. Murthy, B. Nguyen,

M. Sethi, G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou,

M. Vukolic, S. W. Cocco, and J. Yellick. Hyperledger fabric:

A distributed operating system for permissioned blockchains.

In Proceedings of the ACM European Conference on
Computer Systems (EuroSys), pages 30:1–30:15, 2018.

[10] A. Arasu, K. Eguro, R. Kaushik, D. Kossmann, P. Meng,

V. Pandey, and R. Ramamurthy. Concerto: A high

concurrency key-value store with integrity. In Proceedings of
the ACM International Conference on Management of Data
(SIGMOD), 2017.

[11] M. Bellare and D. Micciancio. A new paradigm for

collision-free hashing: Incrementality at reduced cost. In

Proceedings of the International Conference on the Theory
and Applications of Cryptographic Techniques
(EUROCRYPT), 1997.

[12] E. Ben-Sasson. The STARK truth about DEXes. Stanford

Blockchain Conference, 2019.

[13] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable

zero knowledge with no trusted setup. In Proceedings of the
International Cryptology Conference (CRYPTO), Aug. 2019.

[14] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers,

E. Tromer, and M. Virza. Zerocash: Decentralized anonymous

payments from Bitcoin. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2014.

[15] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and

M. Virza. SNARKs for C: Verifying program executions

succinctly and in zero knowledge. In Proceedings of the
International Cryptology Conference (CRYPTO), Aug. 2013.

[16] E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, and M. Virza.

Secure sampling of public parameters for succinct zero

knowledge proofs. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), 2015.

[17] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Scalable

zero knowledge via cycles of elliptic curves. In Proceedings
of the International Cryptology Conference (CRYPTO), 2014.

[18] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct

non-interactive zero knowledge for a von Neumann

architecture. In Proceedings of the USENIX Security
Symposium, 2014.

[19] D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters.

Twisted Edwards curves. In AFRICACRYPT, 2008.

[20] P. A. Bernstein, D. W. Shipman, and W. S. Wong. Formal

aspects of serializability in database concurrency control.

IEEE Transactions on Software Engineering, SE-5(3), May

1979.

[21] N. Bitansky, A. Chiesa, Y. Ishai, O. Paneth, and R. Ostrovsky.

Succinct non-interactive arguments via linear interactive

proofs. In Theory of Cryptography Conference, 2013.

[22] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu.

Zexe: Enabling decentralized private computation. In

Proceedings of the IEEE Symposium on Security and Privacy
(S&P), 2020.

[23] T. Brand, U. Kolodny, and A. Levy. When lightning STARKs.

https://medium.com/starkware/when-lightning-
starks-a90819be37ba, Mar. 2019.

[24] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and

M. Walfish. Verifying computations with state. In

Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), 2013.

[25] Brave Software. Basic Attention Token. https:
//basicattentiontoken.org/wp-content/uploads/
2017/05/BasicAttentionTokenWhitePaper-4.pdf, Mar.

2018.

[26] V. Buterin. On-chain scaling to potentially 500 tx/sec through

mass tx validation. https://ethresear.ch/t/on-chain-
scaling-to-potentially-500-tx-sec-through-
mass-tx-validation/3477, Sept. 2018.

[27] V. Buterin. The dawn of hybrid layer 2 protocols.

https://vitalik.ca/general/2019/08/28/hybrid_
layer_2.html, Aug. 2019.

[28] B. BÃijnz, S. Agrawal, M. Zamani, and D. Boneh. Zether:

Towards privacy in a smart contract world. Cryptology ePrint

Archive, Report 2019/191, 2019.

[29] M. Castro and B. Liskov. Practical Byzantine fault tolerance.

In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 173–186,

1999.

[30] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson,

A. Juels, A. Miller, and D. Song. Ekiden: A platform for

confidentiality-preserving, trustworthy, and performant smart

contracts. In Proceedings of the IEEE European Symposium
on Security and Privacy (EuroS&P), pages 185–200, 2019.

[31] A. Chiesa, D. Ojha, and N. Spooner. Fractal: Post-quantum

and transparent recursive proofs from holography. Cryptology

ePrint Archive, Report 2019/1076, 2019.

[32] D. Clarke, S. Devadas, M. V. Dijk, B. Gassend, G. Edward,

and S. Mit. Incremental multiset hash functions and their

application to memory integrity checking. In Proceedings of
the International Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT), 2003.

[33] CoinMetrics. State of the network: Issue 25.

https://coinmetrics.substack.com/p/coin-metrics-
state-of-the-network-44c, Nov. 2019.

[34] Z. E. C. Company. What is Jubjub?

https://z.cash/technology/jubjub.html, 2017.

[35] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter,

M. Naehrig, B. Parno, and S. Zahur. Geppetto: Versatile

verifiable computation. In Proceedings of the IEEE

Symposium on Security and Privacy (S&P), May 2015.

[36] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels,

A. Kosba, A. Miller, P. Saxena, E. Shi, E. G. Sirer, et al. On

scaling decentralized blockchains. In Proceedings of the
International Financial Cryptography and Data Security
Conference, pages 106–125, 2016.

[37] C. Decker and R. Wattenhofer. A fast and scalable payment

network with Bitcoin duplex micropayment channels. In

Symposium on Self-Stabilizing Systems, pages 3–18, 2015.

[38] F. Denis. Libsodium.

https://github.com/jedisct1/libsodium.
[39] S. Dziembowski, S. Faust, and K. Hostáková. General state

channel networks. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), pages

949–966, 2018.

[40] J. Eberhardt and S. Tai. ZoKrates – Scalable

privacy-preserving off-chain computations. In IEEE
International Conference on Blockchain, pages 1084–1091,

2018.

[41] I. Eyal, A. E. Gencer, E. G. Sirer, and R. V. Renesse.

Bitcoin-NG: A scalable blockchain protocol. In Proceedings
of the USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 45–59, 2016.

[42] G. Fanti, L. Kogan, S. Oh, K. Ruan, P. Viswanath, and

G. Wang. Compounding of wealth in proof-of-stake

cryptocurrencies. In Proceedings of the International
Financial Cryptography and Data Security Conference, 2019.

[43] D. Fiore, C. Fournet, E. Ghosh, M. Kohlweiss, O. Ohrimenko,

and B. Parno. Hash first, argue later: Adaptive verifiable

computations on outsourced data. In Proceedings of the ACM
Conference on Computer and Communications Security
(CCS), 2016.

[44] K. Floersch. Ethereum smart contracts in L2: Optimistic

Rollup.

https://medium.com/plasma-group/ethereum-smart-
contracts-in-l2-optimistic-rollup-2c1cef2ec537,
Aug. 2019.

[45] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic

span programs and succinct NIZKs without PCPs. In

Proceedings of the International Conference on the Theory
and Applications of Cryptographic Techniques
(EUROCRYPT), 2013.

[46] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich.

Algorand: Scaling Byzantine agreements for cryptocurrencies.

In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), pages 51–68, 2017.

[47] J. Groth. On the size of pairing-based non-interactive

arguments. In Proceedings of the International Conference on
the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), 2016.

[48] H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and

E. W. Felten. Arbitrum: Scalable, private smart contracts. In

Proceedings of the USENIX Security Symposium, pages

1353–1370, 2018.

[49] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and

M. Dahlin. All about Eve: Execute-Verify replication for

multi-core servers. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation (OSDI),
pages 237–250, 2012.

[50] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi,

L. Gasser, and B. Ford. Enhancing Bitcoin security and

performance with strong consistency via collective signing. In

Proceedings of the USENIX Security Symposium, pages

279–296, 2016.

[51] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta,

and B. Ford. Omniledger: A secure, scale-out, decentralized

ledger via sharding. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), pages 583–598, 2018.

[52] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou.

Hawk: The blockchain model of cryptography and

privacy-preserving smart contracts. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P), pages

839–858, 2016.

[53] A. Kosba, Z. Zhao, A. Miller, Y. Qian, H. Chan,

C. Papamanthou, R. Pass, abhi shelat, and E. Shi. C∅C∅: A

framework for building composable zero-knowledge proofs.

Cryptology ePrint Archive, Report 2015/1093, 2015.

[54] L. Lamport. How to make a multiprocessor computer that

correctly executes multiprocess programs. IEEE Transactions
on Computers, C-28(9), Sept. 1979.

[55] L. Lamport. Specifying Systems: The TLA+ Language and
Tools for Hardware and Software Engineers. Addison-Wesley,

June 2002.

[56] Y. Lewenberg, Y. Sompolinsky, and A. Zohar. Inclusive block

chain protocols. In Proceedings of the International Financial
Cryptography and Data Security Conference, pages 528–547,

2015.

[57] libsnark. A C++ library for zkSNARK proofs.

https://github.com/scipr-lab/libsnark, 2012.

[58] J. Lind, O. Naor, I. Eyal, F. Kelbert, E. G. Sirer, and

P. Pietzuch. Teechain: a secure payment network with

asynchronous blockchain access. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), pages

63–79, 2019.

[59] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and

P. Saxena. A secure sharding protocol for open blockchains.

In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), pages 17–30, 2016.

[60] P. McCorry, M. Möser, S. F. Shahandasti, and F. Hao.

Towards Bitcoin payment networks. In Proceedings of the
Australasian Conference on Information Security and Privacy,

pages 57–76, 2016.

[61] I. Meckler and E. Shapiro. Coda: Decentralized

cryptocurrency at scale.

https://cdn.codaprotocol.com/v2/static/coda-
whitepaper-05-10-2018-0.pdf, 2018.

[62] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot.

Handbook of Applied Cryptography. CRC Press, Inc., 1st

edition, 1996.

[63] A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and

P. McCorry. Sprites and state channels: Payment networks that

go faster than lightning. In Proceedings of the International
Financial Cryptography and Data Security Conference, 2019.

[64] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system,

Oct. 2008.

[65] A. Ozdemir, R. S. Wahby, and D. Boneh. Scaling verifiable

computation using efficient set accumulators. Cryptology

ePrint Archive, Report 2019/1494, 2019.

[66] C. H. Papadimitriou. The serializability of concurrent

database updates. Journal of the ACM (JACM), 26(4), Oct.

1979.

[67] B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio:

Nearly practical verifiable computation. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P), May 2013.

[68] J. Poon and V. Buterin. Plasma: Scalable autonomous smart

contracts, 2017. https://plasma.io/plasma.pdf.
[69] J. Poon and T. Dryja. The Bitcoin Lightning Network:

Scalable off-chain instant payments. https:
//lightning.network/lightning-network-paper.pdf,
2016.

[70] C. Reitwiessner. zkSNARKs test code.

https://gist.github.com/chriseth/
f9be9d9391efc5beb9704255a8e2989d, 2017.

[71] F. B. Schneider. Implementing fault-tolerant services using

the state machine approach: A tutorial. ACM Computing
Surveys, 22(4):299–319, Dec. 1990.

[72] S. Setty. Spartan: Efficient and general-purpose zkSNARKs

without trusted setup. Cryptology ePrint Archive, Report

2019/550, 2019.

[73] S. Setty, S. Angel, T. Gupta, and J. Lee. Proving the correct

execution of concurrent services in zero-knowledge. In

Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2018.

[74] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and

M. Walfish. Resolving the conflict between generality and

plausibility in verified computation. In Proceedings of the
ACM European Conference on Computer Systems (EuroSys),
Apr. 2013.

[75] S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish.

Making argument systems for outsourced computation

practical (sometimes). In Proceedings of the Network and
Distributed System Security Symposium (NDSS), Feb. 2012.

[76] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and

M. Walfish. Taking proof-based verified computation a few

steps closer to practicality. In Proceedings of the USENIX
Security Symposium, Aug. 2012.

[77] Y. Sompolinsky and A. Zohar. Secure high-rate transaction

processing in Bitcoin. In Proceedings of the International
Financial Cryptography and Data Security Conference, pages

507–527, 2015.

[78] J. Teutsch and C. Reitwießner. A scalable verification solution

for blockchains, Nov. 2017.

https://people.cs.uchicago.edu/teutsch/papers/
truebit.pdf.

[79] F. Vogelsteller and V. Buterin. EIP 20: ERC-20 token standard.

https://eips.ethereum.org/EIPS/eip-20, Nov. 2015.

[80] R. S. Wahby, Y. Ji, A. J. Blumberg, abhi shelat, J. Thaler,

M. Walfish, and T. Wies. Full accounting for verifiable

outsourcing. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2017.

[81] R. S. Wahby, S. Setty, Z. Ren, A. J. Blumberg, and M. Walfish.

Efficient RAM and control flow in verifiable outsourced

computation. In Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2015.

[82] R. S. Wahby, I. Tzialla, abhi shelat, J. Thaler, and M. Walfish.

Doubly-efficient zkSNARKs without trusted setup. In

Proceedings of the IEEE Symposium on Security and Privacy

(S&P), 2018.

[83] M. Walfish and A. J. Blumberg. Verifying computations

without reexecuting them: From theoretical possibility to near

practicality. Communications of the ACM, 58(2), Jan. 2015.

[84] J. Wang and H. Wang. Monoxide: Scale out blockchains with

asynchronous consensus zones. In Proceedings of the
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 95–112, 2019.

[85] B. WhiteHat, A. Gluchowski, HarryR, Y. Fu, and

P. Castonguay. Roll_up / roll_back snark side chain ~17000

tps. https://ethresear.ch/t/roll-up-roll-back-
snark-side-chain-17000-tps/3675, Oct. 2018.

[86] G. Wood. Ethereum: A secure decentralised generalised

transaction ledger Byzantium version.

https://ethereum.github.io/yellowpaper/paper.pdf,
Oct. 2019.

[87] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song.

Libra: Succinct zero-knowledge proofs with optimal prover

computation. In Proceedings of the International Cryptology
Conference (CRYPTO), 2019.

[88] M. Zamani, M. Movahedi, and M. Raykova. RapidChain:

Scaling blockchain via full sharding. In Proceedings of the
ACM Conference on Computer and Communications Security
(CCS), pages 931–948, 2018.

[89] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and

C. Papamanthou. vSQL: Verifying arbitrary SQL queries over

dynamic outsourced databases. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2017.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

