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Abstract. This paper introduces protocols for authenticated
private information retrieval. These schemes enable a client to
fetch a record from a remote database server such that (a) the
server does not learn which record the client reads, and (b) the
client either obtains the “authentic” record or detects server
misbehavior and safely aborts. Both properties are crucial
for many applications. Standard private-information-retrieval
schemes either do not ensure this form of output authenticity,
or they require multiple database replicas with an honest ma-
jority. In contrast, we offer multi-server schemes that protect
security as long as at least one server is honest. Moreover,
if the client can obtain a short digest of the database out of
band, then our schemes require only a single server. Perform-
ing an authenticated private PGP-public-key lookup on an
OpenPGP key server’s database of 3.5 million keys (3 GiB),
using two non-colluding servers, takes under 1.2 core-seconds
of computation, essentially matching the time taken by unau-
thenticated private information retrieval. Our authenticated
single-server schemes are 30-100× more costly than state-
of-the-art unauthenticated single-server schemes, though they
achieve incomparably stronger integrity properties.

1 Introduction

Private information retrieval (PIR) [31] enables a client to
fetch a record from a database while hiding from the database
server(s) which specific record(s) the client retrieves. PIR
has numerous privacy-protection uses, such as in metadata-
private messaging [5, 6], certificate transparency [63, 83],
video streaming [51], password-breach alerting [4, 60, 88],
retrieval of security updates [24], public-key directories [64],
and private SQL-like queries on public data [74, 93].

Most PIR protocols, however, do not ensure data authentic-
ity in the presence of malicious servers. In many multi-server
PIR schemes [18, 31], a single adversarial server can flip any
subset of bits in the client’s recovered output. In all single-
server PIR schemes we know of (c.f., [1, 4, 5, 19, 22, 32, 37,
46, 52, 57, 62, 66, 71, 76, 78] for a non-exhaustive list), a
malicious server can choose the exact output that the client
will receive by substituting all the database records with a
chosen record before processing the client’s request. In appli-
cations where data integrity matters, such as a PGP public-key
directory, unauthenticated PIR is inadequate.

This is the full version of a paper with the same title appearing at USENIX
Security 2023.

This paper introduces authenticated private information
retrieval, which augments the standard privacy properties of
classic PIR with strong authenticity guarantees. In the multi-
server setting, we propose authenticated-PIR schemes for:

• Point queries, in which a client wants to fetch a particular
database record. For example, “What is the public key for
user@usenix.org?”

• Predicate queries, where a client wants to apply an aggre-
gation operator – such as COUNT, SUM, or AVG – to all records
matching a predicate. For example, “How many keys are
registered for email addresses ending in @usenix.org?”

Our corresponding authenticated-PIR schemes guarantee
integrity in the anytrust model [95]: as long as at least one of
the PIR servers is honest. In contrast, prior work that deals
with malicious or faulty PIR servers in the multi-server set-
ting either requires a majority or supermajority of servers
to be honest [11, 12, 39, 49] or requires expensive public-
key cryptography operations [99]. Our schemes use only fast
symmetric-key cryptography in the multi-server setting.

In the single-server setting, we offer authenticated-PIR
schemes for point queries which provide authentication as
long as the client can obtain a short digest of the database via
out-of-band means (Fig. 1). Prior work for the single-server
setting [57, 94, 100] ensures only that the server truthfully
answers the query with respect to some database—not nec-
essarily the database the client queried. Table 2 summarizes
prior work and Section 8 gives the complete discussion.

New definitions. Our first contribution is a new definition of
integrity for private information retrieval. In our multi-server
PIR schemes, a client communicates with several database
servers, and client privacy holds as long as at least one server
is honest. In this multi-server setting, we say that a PIR
scheme satisfies integrity if, whenever the client accepts the
servers’ answers, the client’s output is consistent with an hon-
est server’s view of the database.

Defining integrity in the single-server setting is more tricky:
If the single database server is malicious, who is to say what
the “right” database is? Our approach assumes that the client
can obtain a short digest of the database via some out-of-band
means. A single-server PIR protocol satisfies integrity if the
client accepts the protocol’s output only if the output is consis-
tent with the database that the digest represents. In some appli-
cations of PIR, the client could obtain this database digest via
a gossip mechanism, as in CONIKS [65], or from a collective
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Figure 1: In multi-server authenticated PIR, k ≥ 2 servers hold an exact replica of the database and the client’s output is consistent with the
honest server’s view of the database. If at least one server is honest, the client detects any malicious behaviour from the other servers that reply
with respect to an altered database, and rejects the answers. In the single-server setting, a potentially-malicious PIR server holds the database
outsourced by the data owner. The client’s output is consistent with a database digest that the client obtained from the honest data owner.

authority [86], or from a signature-producing blockchain [73].
In other applications of PIR such as video streaming [51], a
database owner—distinct from the PIR servers—might pro-
duce, sign, and distribute this digest.

A subtle and important point is that our security definitions
require protection against selective-failure attacks by mali-
cious servers [53, 55, 57]. In this class of attacks, a malicious
server answers the client’s query with respect to a database
that differs from the true database in a few rows. By observing
whether the client accepts or rejects the resulting answer, the
server can learn information about which rows the client had
queried. To defend against these attacks, our security defini-
tions require that any misbehavior on the part of a malicious
server causes a client to reject the servers’ response.

New constructions. We construct new authenticated-PIR
schemes in the multi- and single-server settings.

Multiple servers, point queries. Our first multi-server PIR
scheme allows the client to make only point queries—to fetch
single records from the database. The scheme is simple to
implement and has minimal performance overhead. In this
scheme, the servers compute a Merkle tree over the database
rows and send the client the Merkle root. The client aborts
if the servers send different roots. The client then uses unau-
thenticated PIR to fetch its desired row and a Merkle inclu-
sion proof with respect to the root. The scheme provides
authentication when composed with certain—though not all—
standard PIR schemes. (Kushilevitz and Ostrovsky suggested
using Merkle trees in this setting [57], though we are the
first to formalize the approach and identify the class of PIR
schemes for which it is secure.) On a database containing N
records of ℓ bits, and on security parameter λ, our two-server
authenticated-PIR scheme for point queries has communica-
tion cost O(λ logN + ℓ), which matches the cost of the best
unauthenticated schemes. Experimentally, this form of au-

thentication imposes less than 3× computational and 1.6×
bandwidth overhead, compared with unauthenticated PIR.

Multiple servers, predicate queries. Our multi-server scheme
for predicate queries starts with an existing unauthenticated
scheme based on function secret sharing [17, 18, 93]. We
cannot use Merkle trees for authentication: the space of pos-
sible queries is exponentially large, so the servers cannot
precompute and authenticate each potential answer as before.
The client instead uses an information-theoretic message-
authentication code—common in malicious secure multi-
party protocols [33, 35]—to detect whether a server has tam-
pered with its answer. Asymptotically, the communication and
computation of our authenticated-PIR scheme for predicate
queries matches the costs of the corresponding unauthenti-
cated scheme. Empirically, the authenticated scheme incurs a
median overhead of less than 1.02× for both user time and
bandwidth. Our multi-server scheme for predicate queries is
concretely more computationally expensive (at least 350×)
than our scheme for point queries because the cost of evaluat-
ing the function secret shares is non-trivial. Thus, this scheme
does not scale as well to a large number of servers compared
to our specialized multi-server scheme for point queries.

Single server, point queries. Finally, we give two single-
server authenticated-PIR protocols: one from the learning-
with-errors assumption, and one from the decisional-Diffie-
Hellman assumption. Like many recent single-server PIR pro-
tocols [1, 4, 5, 52], our schemes extend the classic Kushilevitz-
Ostrovsky scheme based on additively homomorphic encryp-
tion [57, 75]. Our schemes incorporate additional random-
ness that the client uses to authenticate the server’s response.
The client verifies the server’s reply using a short database
digest that the client obtains via out-of-band means. Our
schemes operate with single-bit records. We propose exten-
sions for handling larger records, but they require increased
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client computation: more efficient single-server, multi-bit au-
thenticated PIR remains a promising area for future work.
Over a database of size N and with security parameter λ, our
single-server authenticated-PIR schemes have communica-
tion cost

√
N ·poly(λ). In contrast, unauthenticated schemes

have communication cost as low as logN ·poly(λ). Our fastest
single-server scheme is 30-100× more computationally ex-
pensive than the fastest unauthenticated scheme.

An example application. To evaluate authenticated PIR in the
context of a practical application, we design and build Keyd,
a privacy-preserving PGP public-key directory deployed in
the two-server setting. A Keyd client can query the servers
for the PGP public key corresponding to a particular email ad-
dress without leaking the queried email address to the servers.
Moreover, a Keyd client can also query the servers for private
analysis of the PGP public keys dataset by issuing conjunctive
COUNT, SUM and AVG queries without leaking the parameter of
the keys over which the predicate is computed. For exam-
ple, a client can issue a query of the form SELECT COUNT(*)

FROM keys WHERE keyAlgorithm = p, where p represents
the hidden parameter of the predicate, e.g., RSA or ElGa-
mal. Our new authenticated-PIR schemes provide the client
with a strong integrity guarantee about the output of the pro-
tocols. When run on a recent dump of the SKS PGP key
directory, including over 3.5 million keys, querying for a par-
ticular key takes the client 1.11 seconds, compared with 1.10
seconds with unauthenticated PIR. Issuing predicate queries
with Keyd on the same database imposes an overhead of
1.01× on user time and of 1.05× on bandwidth compared
with unauthenticated PIR.

2 Background and motivation

This section reviews classic PIR schemes, and why naïvely
introducing integrity protection into them is unsafe.

2.1 Private information retrieval (PIR)
A PIR protocol [31] takes place between a client and one or
more servers. Each server holds a copy of a database consist-
ing of a set of equal-length records. The client wants to query
the database without revealing the details of its query to the
servers. Modern PIR protocols support two types of queries:
(1) the client can fetch a single record from the database, with-
out revealing which record it retrieved, or more generally, (2)
the client can evaluate a function on all the database records,
without revealing which function it evaluated. Non-trivial PIR
schemes must also be communication efficient, requiring the
client and servers to exchange a number of bits sublinear in the
database size. Otherwise, the client could simply download
the entire database and perform the query locally.

There are two main types of PIR protocols: multi-server
and single-server. In multi-server PIR [31], the client com-
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Multi-server schemes
Robust PIR [11, 12] 1 ✗ ✗ ✓ ✓

Byzantine PIR [11, 12, 39, 49, 56] >2k/3 ✓ ✓ ✓ ✓

Fault-tolerant PIR [97] >k/2 ✓ ✓ ✓ ✓

Verifiable PIR [99] 1 ✓ ✓ ✗ ✗

Authenticated PIR (§4, §5) 1 ✓ ✓ ✓ ✗

Single-server schemes
KO97 [57] 0 ✓ ✗ ✗ ✗

Verifiable PIR [94, 100] 0 ✓ ✗ ✗ ✗

Authenticated PIR (§5) 0 ✓ ✓ ✗ ✗

Table 2: Summary of PIR schemes that tolerate dishonest servers.
The multi-server schemes assume k servers in total. Malicious indi-
cates schemes that resist malicious adversaries, as opposed to merely
faulty servers. Selective-failure secure indicates schemes designed
to resist selective-failure attacks [55]. No public-key cryptography
indicates schemes that require only fast symmetric primitives; single-
server schemes always require public-key operations [34]. Recovery
indicates whether, in case of a server’s misbehaviour, the client is
able to recover the correct output or just aborts.

municates with k > 1 database replicas; correctness holds
if all k servers are honest and privacy holds if at least one
server is honest. Multi-server PIR schemes traditionally offer
information-theoretic privacy. In single-server PIR schemes
(k = 1) [57], correctness holds if the single server is honest
and privacy holds against a dishonest server. Single-server
PIR schemes require a computationally-bounded server and
public-key cryptographic operations [34].

In many applications, the database is a list of
(keyword,value) pairs; the PIR client holds a keyword
and wants the associated value. In this paper, we construct
authenticated PIR schemes for integer-indexed arrays, and we
use off-the-shelf methods [29, 48] to convert these schemes
into authenticated keyword-based PIR schemes.

2.2 Why integrity matters in PIR

Standard PIR schemes give the client no integrity guarantees.
If any one of the servers in a single- or multi-server scheme
deviates from the protocol, the malicious server can—in many
PIR protocols—completely control the output that the client
receives. In other words, classic PIR protocols do not ensure
correctness against even just one malicious server.

This lack of integrity protection is extremely problematic
in many applications of PIR:

• Public-key server: If a client uses PIR to query a PGP or
Signal key server for a contact’s public keys, a malicious
server could cause the client to fetch a false public key
for which the adversary controls the secret key.
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• Domain name system: If a client uses PIR to query a
DNS resolver, a malicious PIR server could cause the
client to recover the wrong IP address for a hostname
and thus poison the client’s DNS cache.

• Online certificate status protocol (OCSP): If a client
uses PIR to query the revocation status of a public key, a
malicious PIR server could trick the client into trusting a
certificate that was revoked by the CA after compromise.

• Content library: If a client uses PIR to fetch a movie [51]
or a software update, a malicious PIR server could cause
the client to recover a malware-infected file instead.

Non-private variants of these applications can already offer
integrity. For example, CONIKS [65] provides integrity of key
bindings for public-key directory servers and DNSSEC [7]
ensures integrity of DNS data. The challenge is thus to ensure
integrity in the private variants of these applications.

2.3 Selective failure and other attacks on PIR

We can always compose standard authentication mechanisms
with PIR. For example, a database owner – the party respon-
sible for its creation – can append to each database row a
digital signature on the record under the database owner’s key
or a Merkle inclusion proof with respect to a known root. The
database owner can then outsource the authenticated database
to an untrusted PIR server. After performing a query, the client
simply checks the authentication tag on the row it retrieved.

This attempt at authenticated PIR is insecure and vulner-
able to selective-failure attacks [55]. In such attacks, a ma-
licious PIR server selectively corrupts the database so that
only targeted queries fail the integrity check. Suppose a mali-
cious PIR server “guesses” that the client is likely to access a
particular record, and corrupts only that record. The client’s
integrity check then fails only if the attacker’s guess was cor-
rect. If the attacker can determine whether the client accepted
or rejected the PIR protocol’s output—e.g., via the client’s
subsequent behavior—the attacker can violate client privacy.

Naïve composition can yield other security and privacy haz-
ards. For example, if authentication tags attached to database
rows do not uniquely identify the database version and row
number, then a malicious PIR server might undetectably swap
or duplicate rows or replay old database versions.

Even in a multi-server setting where one malicious server
cannot unilaterally corrupt database rows independently, but
is limited to blindly flipping bits in its answer without know-
ing which row these bit-flips will affect, more subtle attacks
on naïve compositions may be readily feasible. If rows are
protected by malleable digital signatures [40], for example,
then a malicious server might flip signature bits in the result
so that the signature of a particular “guessed” database row
becomes a different still-valid signature the client will accept,
while the signatures on all other rows become invalid.

3 Defining authenticated PIR

We now define authenticated PIR in the multi- and single-
server settings. In both models, we wish to ensure that the
client either obtains “correct” (authentic) output, or else safely
rejects the answer without leaking any private information.
Privacy must hold even if the PIR servers learn whether the
client has accepted or rejected the answer. Therefore, our pro-
tocols protect against selective-failure attacks (Section 2.3).

Notation. We use N to denote the set of natural numbers. For
N ∈N, [N] = {1, . . . ,N}. We use negl(·) to denote a negligible
function and poly(·) to denote a fixed polynomial. Through-
out, we use F to denote a finite field. We will typically take F
to be the set of integers modulo a prime p with addition and
multiplication modulo p. For a finite set S, we write x←R S
to indicate that x is sampled independently and uniformly at
random from S. The symbol⊥ is an output that indicates rejec-
tions. For a group G, we use 1G to denote the identity element.
For finite sets S and T , we use Funs[S,T ] to denote the set of
all functions from S to T . By “efficient algorithm” we refer to
a probabilistic polynomial time algorithm. In some settings,
we will also consider hardness against non-uniform adver-
saries (i.e., polynomial-time algorithms that can additionally
take polynomial-size advice as input, see Theorem 37).

3.1 Multi-server definition

We now define k-server authenticated PIR schemes, for k ≥ 2.
See Section B for the full formalism.

Our definition generalizes private information retrieval to
weighted functions of the database rows: the client has a secret
function f in mind, which must come from a particular class
of functions F . The servers hold a database (x1, . . . ,xN) and
public “weights” (w1, . . . ,wN), one per database row. The
client’s goal is to get the weighted sum of its private function
f applied to each of the rows: ∑i∈[N] wi f (i,xi). When the
function class F is expressive enough, this general syntax
subsumes not only the usual definition of multi-server PIR,
but also more expressive PIR schemes for predicate queries.

Definition 1 (k-server authenticated PIR for predicate
queries). A k-server authenticated PIR scheme for function
class F ⊆ Funs[[N]×{0,1}ℓ,F], database size N ∈ N, and
weights w ∈ FN , consists of three efficient algorithms:

• Query(1λ, f )→ (st,q1, . . . ,qk). Given a security param-
eter λ, expressed in unary, and a function f ∈ F , return
secret client state st and queries q1, . . . ,qk, one per server.

• Answer(X,w,q) → a. Apply query q to database X =
(x1, . . . ,xN) ∈ ({0,1}ℓ)N together with weights w =
(w1, . . . ,wN) ∈ FN and return answer a.

• Reconstruct(st,a1, . . . ,ak)→
{︁

∑i∈[N] wi f (i,xi),⊥
}︁

. Take
as input client state st and answers a1, . . . ,ak and return
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the weighted output of the function f applied to the rows
of database X, or an error ⊥.

A k-server authenticated-PIR protocol must satisfy the fol-
lowing properties. We state the properties here informally and
give formal cryptographic definitions in Section B.

Correctness. Informally, an authenticated-PIR scheme is cor-
rect if, when an honest client interacts with honest servers,
the client always recovers the weighted output of its chosen
function applied to the database, i.e., ∑i∈[N] wi f (i,xi).

Integrity. An authenticated-PIR scheme preserves integrity
with error ε if, when an honest client interacts with a set of k
servers, where at most k−1 can be malicious and might arbi-
trarily deviate from the protocol, the client either: outputs the
sum of products of its desired function and weights applied
to the database, or outputs the error symbol ⊥, except with
probability ε. If the scheme has negligible integrity error, we
just say that it “preserves integrity.” Classic PIR schemes do
not ensure this integrity property.

Privacy (against malicious servers). An authenticated-PIR
scheme satisfies privacy if any coalition of up to k−1 ma-
licious servers “learns nothing”—in a strong cryptographic
sense—about which function in the function class F the
client wants to evaluate on the database, even if the servers
learn whether the client’s output was the error symbol ⊥
during reconstruction. Standard PIR schemes do not neces-
sarily satisfy our strong notion of privacy, since such schemes
may be vulnerable to selective-failure attacks (Section 2.3);
authenticated-PIR schemes that provide privacy are not.

We say that an authenticated-PIR scheme is secure if it
satisfies both integrity and privacy. We define integrity and
privacy separately because, as Section 3.3 shows, we can re-
duce the integrity error of a PIR scheme that provides privacy.

Example 2 (PIR for point queries—Standard PIR). In
authenticated-PIR schemes for point queries, as in a stan-
dard PIR scheme, a client privately fetches a single database
row. We can recover this functionality from Theorem 1, where
we take the row length ℓ= 1 for simplicity. The class of func-
tions F is the class of point functions F = { f (1), . . . , f (N)} ⊆
Funs[[N]×{0,1},F], where f (i)(i, ·) = 1 and f (i)(i′, ·) = 0
for all i′ ̸= i. The weights are the database entries themselves,
i.e., wi = xi ∈ {0,1} ⊆ F, for i ∈ [N].

Example 3 (COUNT query). A COUNT predicate query
counts the database entries satisfying a predicate. A client
can count the occurrences of a string σ ∈ {0,1}ℓ in a
database x1, . . . ,xN ∈ {0,1}ℓ using the class of functions
F ⊆ Funs[[N]×{0,1}ℓ,F], where f (·,xi) = 1 if xi = σ and
f (·,xi) = 0 otherwise, with constant weights wi = 1F, i ∈ [N].

Remark 4 (Security against k− 1 malicious servers). The
form of authenticated PIR we define above requires security
to hold even against coalitions of up to k−1 malicious servers.
This defines the minimal requirement for multi-server PIR

schemes, which do not support complete collusion, and is
a model frequently used in anonymous communication sys-
tems [6, 58, 95]. In particular, the colluding servers can share
their queries with each other and agree on the answers. The
protocols that we construct satisfy this strong notion of se-
curity. A weaker definition requires security to hold against
only adversaries that control a lower threshold t < k− 1 of
the servers. Prior work [11, 12, 49] takes t < k/2 or t < k/3.
We discuss these and other related approaches in Section 8.

3.2 Single-server definition
This section defines single-server authenticated PIR. One
challenge to providing integrity in the single-server setting is
that the client has no source of information about the database
content other than the server itself. (In the multi-server setting,
the honest server acts as a source of “ground truth.”) A mali-
cious server can answer the client’s query with respect to a
database of the server’s choosing, and completely control the
client’s output. We address this problem by introducing a pub-
lic database digest that cryptographically binds the server to
a given database and serves as the ground truth in the scheme.
In applications, the client must obtain this digest via out-of-
band means, e.g., via gossip, as in CONIKS [65], or from the
database owner if the latter is distinct from the PIR server.

We now give the formal definition of a single-server
authenticated-PIR scheme, which differs from the multi-
server definition in its use of a digest and in the absence of
complex queries. We assume for simplicity that each database
record consists of a single bit. The definition generalizes nat-
urally to databases with longer rows.

Definition 5 (Single-server authenticated PIR for point
queries). A single-server authenticated PIR scheme, for a
database of size N ∈ N, consists of the following algorithms:

• Digest(1λ,x)→ d. Take a security parameter λ (in unary)
and a database x ∈ {0,1}N and return a digest d.

• Query(d, i)→ (st,q). Take as input a digest d and an index
i ∈ [N] and return a client state st and a query q.

• Answer(d,x,q) → a. Apply query q to database x ∈
{0,1}N with digest d and return answer a.

• Reconstruct(st,a)→{0,1,⊥}. Take as input state st and
answer a and return a database bit or an error ⊥.

A single-server authenticated-PIR scheme must satisfy
analogous properties to those in the multi-server setting: cor-
rectness, integrity and privacy. If a scheme satisfies both in-
tegrity and privacy, we say that the scheme is secure. We
present the formal definitions in Section E.

Malformed digest. Our schemes guarantee integrity for
single-server authenticated PIR only when the client uses an
honestly-generated digest. In all applications of single-server
PIR that we envision, this security guarantee is sufficient—
the client’s goal is to check that a (possibly malicious) PIR
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server’s answer is consistent with the (correct) digest that the
client has obtained out-of-band from the data owner. Stronger
notions of security are possible, however. We could require
that even if the digest is generated adversarially, the client
is guaranteed to recover output that is consistent with some
n-bit database. This stronger notion is related to that of simu-
latable adaptive oblivious transfer [23] and extends to other
cryptographic primitives [45, 54].

3.3 Integrity amplification
The lattice-based single-server authenticated-PIR schemes
that we construct in Section 5 have noticeable integrity er-
ror ε = 1/poly(λ) for some parameter settings. We show, in
Section E.2, that if the authenticated-PIR schemes provide
privacy, then it is possible to reduce the integrity error to a neg-
ligible quantity, in both the multi- and single-server settings.
In particular, we prove:

Theorem 6 (Integrity amplification, informal). If Π is an
authenticated-PIR scheme with privacy and with integrity
error ε then, for every t ∈ N, there is an authenticated-PIR
scheme Π′ with privacy and with integrity error εt+1, where
Π′ invokes Π at most 2t +1 times.

The integrity-amplification construction first encodes the
database using an error-correcting code that can correct t
errors. For instance, using the simple repetition code, we ex-
pand each database bit into 2t +1 codeword bits. (When the
database records are long, we can use better error-correcting
codes.) Then, the client uses the base authenticated PIR
scheme Π 2t + 1 times to fetch each of the 2t + 1 bits of
the codeword corresponding to its desired database record.

If any of these 2t +1 runs output ⊥, the client outputs ⊥.
If none of the 2t +1 runs output ⊥, then either: (a) the client
recovers at least t +1 correct bits of the codeword, in which
case the client correctly recovers its desired output bit, or
(b) the client recovers an incorrect bit on more than t of the
protocol runs, which happens with probability at most εt+1,
by the ε-integrity of the underlying PIR scheme.

4 Multi-server authenticated PIR

We give two constructions of multi-server authenticated PIR.

4.1 Point queries via Merkle trees
We first present a multi-server authenticated-PIR scheme for
point queries. This scheme enables a client with a secret index
i ∈ [N] to retrieve the ith record from a database of N records.

A natural way to construct an authenticated-PIR scheme
is to combine a standard (unauthenticated) multi-server PIR
scheme with a standard integrity-protection mechanism, such
as Merkle trees [67]. While this composition is in general

insecure under our definition, we show that it can be secure
with a careful choice of the underlying primitives.

We sketch the construction here and formally present it in
Section C (Construction 4). This construction uses a standard
multi-server PIR scheme in which (a) the client sends a single
message to each server and receives a single message in re-
turn and (b) client reconstructs its output by summing up (or
XORing) the answers from the servers. Many standard PIR
schemes have this form [18, 31, 32, 48] (see Theorem 15).

In these schemes, if any of the servers deviate from the pre-
scribed protocol, the worst they can do is to cause the client
to recover the correct output shifted by a constant of the ad-
versarial servers’ choosing. Therefore, instead of recovering
the message m ∈ {0,1}ℓ, the client recovers m⊕∆, for some
non-zero value ∆ ∈ {0,1}ℓ.

Our approach then is to have the servers compute a Merkle
tree over the N database entries along with their indices:
{(1,x1), . . . ,(N,xN)}. Call the root of the tree R. Then for
each entry, each server constructs a Merkle proof πi of inclu-
sion in the tree rooted at R and attaches this proof to each
database record. The asymptotic complexity of this prepro-
cessing phase is O(N); we discuss concrete costs in Section 7
and Section C.3. Finally, the client and servers run the PIR
protocol over the database {(1,x1,π1), . . . ,(N,xN ,πN)}. Each
of the servers also sends the Merkle root R to the client.

The client first checks that it received the same Merkle root
R from all of the servers. Since at least one of the servers is
honest, this ensures the client receives the honestly-generated
root. If all the roots match, the client reconstructs the record
and verifies the Merkle inclusion proof with respect to R.
If a server misbehaves, the client will recover (i′,x′i,π′i) =
(i,xi,πi)⊕∆ for some non-zero offset ∆. Whenever ∆ ̸= 0,
security of the Merkle proof ensures that π′i will be an invalid
proof of (i,xi) with respect to R.

4.2 Predicate queries via function sharing

Recent work on function secret sharing [17, 18] in the multi-
server PIR setting enables a client to compute a non-trivial
function f over the database contents, without revealing this
function f to the servers. For example, a client can count the
number of database records that match a certain predicate,
without revealing this predicate to the servers.

We design an authenticated-PIR protocol for predicate
queries by extending classic PIR schemes based on func-
tion secret sharing [17, 18]. At a high level, the client makes
two correlated PIR queries. The reconstructed answer to the
first query should contain the value v that the client wants.
The reconstructed answer to the second query should contain
v′ = αv, where α is a random scalar known only to the client.
To authenticate the servers’ answers, the client checks that
αv = v′ and rejects if not. As we will show, if any server mis-
behaves, the client will be checking that α(v+∆) = v′+∆′,
for some non-zero ∆ and ∆′. Sampling α from a sufficiently
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large space of values ensures that the client catches a cheating
server almost certainly.

This idea of using secret-shared random values for data
authentication follows a long line of work on information-
theoretic message authentication codes and malicious-secure
multiparty computation [16, 33, 35, 38].

We now describe our construction in detail.

Preliminaries: Function secret sharing. We recall the defi-
nition of function secret sharing [17, 18]: A k-party function
secret-sharing scheme is defined with respect to a function
class F . Each function f ∈ F maps elements in some input
space to a finite group or field F. Then a function secret-
sharing scheme consists of two efficient algorithms:

• Gen(1λ, f )→ ( f1, . . . , fk). Given a function f ∈ F , output
k function-secret-shares f1, . . . , fk.

• Eval( fi,x)→ fi(x) ∈ F. Given a secret-share fi and a func-
tion input x, output the evaluation of fi on x.

A function secret-sharing scheme must satisfy the following
informal properties, defined formally in Section A.3:

• Correctness. Given shares ( f1, . . . , fk) of a function f ∈F ,
for all x in the domain of f , it holds that ∑i∈[k]Eval( fi,x) =
f (x) ∈ F.

• Security. Given shares ( f1, . . . , fk) of a function f ∈ F , a
computationally-bounded adversary that learns k−1 of the
shares learns nothing about the shared function f , beyond
the fact that f ∈ F .

For the construction, we need the following definition:

Definition 7 (Function class closed under scalar multiplica-
tion). Let F be a class of functions whose codomain is a
finite field F. Then we say that the function class F is closed
under scalar multiplication if, for all functions f ∈ F and for
all scalars α ∈ F, it holds that the function α · f ∈ F.

Construction. Our scheme, presented in Construction 1, is
defined with respect to a finite field F, a record length ℓ ∈ N,
a database size N ∈ N, a function class F ⊆ Funs[[N]×
{0,1}ℓ,F] closed under scalar multiplication, and weights
w ∈ FN . The k ≥ 2 servers each hold a copy of a database
of N ℓ-bit records. We write the n database records as
x1, . . . ,xN ∈ {0,1}ℓ. Given a predicate function f ∈ F , the
client samples a random non-zero field element α ∈ F and
secret-shares f together with a new function g defined as
g(i,xi) = α · f (i,xi) ∈ F into k shares, i.e., f j and g j for j ∈
[k]. (Alternatively, if the underlying function-secret-sharing
scheme supports it, the client can also secret share the single
function ( f (i,xi),g(i,xi)) whose image is in F2.)

Upon receiving the shares, each server j ∈ [k]
sets each element of its answer tuple to the sum of
the function shares’ evaluations on all the database
records multiplied by the corresponding weights: i.e.,

Construction 1 (k-server authenticated PIR for predi-
cate queries tolerating k− 1 malicious servers). The
construction is parametrized by a number of servers
k ∈ N, a number of database rows N ∈ N, a row length
ℓ ∈ N, a finite field F, a security parameter λ, a func-
tion class F ⊆ Funs[[N]×{0,1}ℓ,F] that is closed un-
der scalar multiplication, and a function-secret-sharing
scheme (FSS.Gen,FSS.Eval) for the function class F ,
parametrized by λ. We represent the database as N binary
strings, each of length ℓ: x1, . . . ,xN ∈ {0,1}ℓ.
Query

(︁
1λ, f

)︁
→ (st,q1, . . . ,qk)

1. Sample a random field element α←R F\{0}.
2. Set the state st← α.
3. Let g← α · f . Such a g must exist since the function

class F is closed under scalar multiplication, as in
Theorem 7.

4. Compute q1, . . . ,qk← FSS.Gen(1λ, f ) together with
q′1, . . . ,q

′
k← FSS.Gen(1λ,g).

5. Output
(︁
st,(q1,q′1), . . . ,(qk,q′k)

)︁
.

Answer
(︁
x1, . . . ,xN ∈ {0,1}ℓ,w ∈ FN ,q

)︁
→ a ∈ F2

1. Parse q as (q f ,qg).
2. Compute answer as a f ←∑ j∈[N] w j ·FSS.Eval(q f ,x j)

and ag← ∑ j∈[N] w j ·FSS.Eval(qg,x j).

3. Return a← (a f ,ag) ∈ F2.

Reconstruct
(︁
st,a1, . . . ,ak ∈ F2

)︁
→ F∪{⊥}

1. Parse the state st as α ∈ F.
2. Compute a← a1 + · · ·+ak ∈ F2.
3. Parse a as (m,τ) ∈ F2.
4. Compute τ′← m ·α ∈ F.
5. If τ = τ′, output m ∈ F. Otherwise, output ⊥.

a j←
(︁
∑i∈[N] wi · f (i,xi),∑i∈[N] wi ·g(i,xi)

)︁
∈ F2. The

servers directly evaluate the function shares on the database
records. The client adds the answer vectors and reconstructs
an intermediate value a← ∑ j∈[k] a j ∈ F2.

If all the servers are honest, the client-
reconstructed value a equals a = (a1,a2) =(︁
∑i∈[N] wi · f (i,xi),α ·∑i∈[N] wi · f (i,xi)

)︁
. The client then

verifies that α · a1 = a2. As α is randomly generated and
secret-shared among the servers, only the client knows its
value. If α · a1 ̸= a2, then the client rejects. Otherwise, the
client accepts and outputs a1.

Proof sketch. To explain how this approach protects in-
tegrity, we argue by contradiction. Say that server j ∈ [k]
should have returned an answer a j ∈ F2 to the client. Sup-
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pose server j is malicious and returns an answer â j =
a j + ∆ ∈ F2 for some non-zero value ∆ = (∆m,∆τ) ∈
F2. The client will reconstruct the answer as a + ∆ =(︁
∑i∈[N] wi · f (i,xi)+∆m,α ·∑i∈[N] wi · f (i,xi)+∆τ

)︁
∈ F2. As

server j has no information about α—due to the privacy guar-
antees of the function-secret-sharing scheme—the malicious
server’s choice of ∆ is (computationally) independent of α.
For the verification to pass, it must be that α ·∆m = ∆τ. If
∆ ̸= 0 and α is sampled independent of ∆, this happens with
probability at most 1/(|F| − 1) over the randomness of α.
Next, the privacy of the client’s queries is ensured by the un-
derlying function secret-sharing scheme. In Section D.1, we
formally prove that this construction is secure.

Theorem 8. Suppose there exists a k-party function-secret-
sharing scheme for a function class F ⊆ Funs[[N] ×
{0,1}ℓ,F] that is closed under scalar multiplication (Theo-
rem 7), for database size N ∈N, which, on security parameter
λ ∈ N, outputs secret shares of length L(λ). Then, there is a
k-server authenticated-PIR scheme for function class F with
query complexity 2L(λ)k bits and answer complexity 2kλ bits.

By applying the two-party function-secret-sharing scheme
of Boyle, Gilboa, and Ishai [18], we get:

Corollary 9. Given a length-doubling pseudorandom genera-
tor with seed length λ, there is a two-server authenticated PIR
scheme for point functions and interval functions with com-
munication complexity O(λ logN), on security parameter λ

and database size N.

Handling functions with larger output. In some PIR ap-
plications, a client might want to evaluate a function whose
output is larger than a single field element, e.g., geographi-
cal coordinates for route planners [93]. We hence extend our
scheme to support multi-element authenticated output.

Here, we authenticate each output element of a function
f with a separate function g j, for j ∈ [b], where b is the
output length of f using an algebraic manipulation detec-
tion code [33]. In the query algorithm, the client gener-
ates a secret random scalar α as before but then computes
(g1(i,xi),g2(i,xi), . . . ,gb(i,xi)) = (α,α2, . . . ,αb) ⊙ f (i,xi),
where ⊙ represents the element-wise product, and sends
secret-shared f and g1, . . . ,gb to the servers. The servers then
compute their answer as a← (a f ,ag1 , . . . ,agb) ∈ F2b.

This already enables the client to validate integrity of
the full output after the reconstruction by comparing it with
ag1 , . . . ,agb . We further reduce the protocol’s communication
cost by setting the servers’ answer to (a f ,ag = ∑i∈[b] agi) ∈
Fb+1. The client re-computes this linear combination from
the answer and compares it with the received value.

We show the full construction in Section D.2.

5 Single-server authenticated PIR

We now present a single-server authenticated-PIR scheme.

As depicted in Fig. 1, in this setting a data owner outsources
the data to a single PIR server (e.g., an Amazon EC2 instance)
and produces a database digest. This public digest serves as a
commitment to the database contents. The client can fetch the
digest from a distributed authority, or using a CONIKS-like
gossip protocol [65], or out-of-band from the data owner.

It is possible in principle to construct single-server
authenticated-PIR schemes by augmenting a standard single-
server PIR scheme [5, 37, 52, 66, 71] with a succinct proof
of correct server execution [77], but this would be orders of
magnitude more costly in computation than our schemes are.

Preliminary: Rebalancing to get
√

N communication.
Our single-server authenticated-PIR schemes natively have
a digest of size poly(λ) bits, upload N · poly(λ) bits, and
download poly(λ) bits. To reduce total communication to√

N ·poly(λ) bits, we use a standard rebalancing trick [31].
The server first splits the database into

√
N chunks, each

of size
√

N. The digest then consists of the hash (with any
collision-resistant hash function, e.g., SHA-256) of the

√
N

database digests. To query the database for the ith row of
the jth chunk, the client issues a single query for row i. The
server responds with the

√
N chunk digests, and the answer

computed against each chunk. The client checks that (1) the
hash of the

√
N chunk digests match the database digest and

(2) all
√

N chunk queries accept. If these checks pass, the
client outputs the value of the jth response as its answer.

5.1 From learning with errors

Our first single-server authenticated-PIR scheme builds on
lattices and relies on the learning-with-errors assumption
(LWE) [82] (see Theorem 43 for a formal statement). The
LWE assumption with parameters n,q,m,s ∈ N, states that
the two distributions (A,sTA + eT) and (A,uT) are com-
putationally indistinguishable, where A ←R Zn×m

q , s ←R Zn
q,

e← Dm
Z,s ∈ Zm

q , and u←R Zn
q, and where DZ,s is the discrete-

Gaussian distribution with width parameter s (cf. Section F.1).
Construction 2 describes our scheme, which is a twist

on Regev’s LWE-based encryption scheme [82] and is an
authenticated analogue of the SimplePIR LWE-based PIR
scheme [52]. (We compare against SimplePIR in Section 7.)
Regev’s scheme encrypts a vector v ∈ {0,1}N ⊆ ZN

q by the
pair (A,sTA+ eT+ t ·vT), where A ∈ Zn×N

q is the LWE ma-
trix, s←R Zn

q is the LWE secret, e← DN
Z,s is the error vector,

and t ∈ Zq is some scaling factor (commonly set to q/2).
Regev’s scheme is linearly homomorphic: for any vector
x ∈ {0,1}N ⊆ ZN

q , the ciphertext (Ax,(sTA+ eT+ t ·vT) ·x)
decrypts to vTx (provided the accumulated error eTx is small
compared to t).

In our scheme, the first portion of this ciphertext (A ·x, on
database x ∈ {0,1}N ⊆ ZN

q ) becomes the digest. Finding two
distinct databases that map to the same digest is as hard as
solving the short integer solutions problem [2].
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To query for database record i ∈ [N], the client prepares the
Regev encryption qT of the ith basis vector ηi ∈ ZN

q (i.e., ηi is
the vector that is 0 everywhere and 1 at index i). The scaling
factor t ∈Zq is sampled randomly (from an appropriate range),
which is critical for the security analysis. To answer the query,
the server homomorphically computes the encryption of the
inner product of the client’s query with the database: qTx ∈
Zq. The client checks that the decrypted value is either 0
(indicating a database bit of zero) or close to t (indicating a
database bit of one). Otherwise, the client outputs ⊥.

Finally, by rebalancing Construction 2, we have:

Theorem 10. Under the LWE assumption, Construction 2
is a secure single-server authenticated-PIR scheme when
instantiated with database size N, lattice parameters (n,q,s),
random matrix A←R Zn×N

q , and bound B = O(
√

λNs). The
digest size consists of n

√
N elements of Zq and the per-query

communication cost is 2
√

N elements of Zq. The scheme has
integrity error ε < 2B/(q−4B).

The most important difference between SimplePIR [52]
and Construction 2 is in the choice of LWE parameters. Since
the integrity error is roughly

√
N/q, on database size N and

modulus q, we must take the modulus q to be at least 128 bits
to achieve negligible integrity error. (Alternatively, we can
use a smaller modulus and run the protocol many times to
amplify integrity as per Section 3.3.) In contrast, SimplePIR
uses a 32-bit modulus with no repetition.

5.2 From decisional Diffie-Hellman
This second construction uses the decisional Diffie-Hellman
assumption (DDH). DDH holds in a group G of prime order p
generated by g ∈G, if for x,y,z←R Zp, the two distributions
(g,gx,gy,gxy) and (g,gx,gy,gz) are computationally indistin-
guishable (see Section G.1 for a formal definition).

Construction 3 details our scheme, which uses a group
G of large prime order p. The database is a vector of N
bits x = (x1, . . . ,xN) ∈ {0,1}N . The public parameters of the
scheme include group elements h1, . . . ,hN ∈G. The digest is
the product d←∏

N
j=1 h

x j
j ∈G. Finding two distinct databases

that map to the same digest is as hard as solving the discrete-
log problem in G [79].

The protocol operates as follows. The client samples two
random values r, t ←R Zp. The client then prepares a vector
of N group elements. Say the client wants to fetch the ith

database bit. For j ∈ [N], the jth component of this vector is
q j← hr+t

j if j = i and is q j← hr
j otherwise. Under DDH, the

server cannot differentiate between qi and q j for j ̸= i.
The client queries the server with the resulting blinded vec-

tor (q1, . . . ,qN). The server exponentiates each vector element
to the corresponding database bit and computes the product
a = ∏ j∈[N] q

x j
j . If the server honestly executes the protocol,

the client receives back the product of the blinded digest dr

Construction 2 (Single-server authenticated PIR from
LWE). The construction is parametrized by a database
length N ∈N, a lattice dimension n∈N, a modulus q∈N,
a Gaussian width parameter s ∈N, a bound B ∈N, and a
matrix A ∈ Zn×N

q . The database is a vector x ∈ {0,1}N .

Digest(x ∈ {0,1}N)→ d ∈ Zn
q

1. Output d← Ax ∈ Zn
q.

Query
(︁
d ∈ ZN

q , i ∈ [N]
)︁
→ (st,q)

1. Sample s←R Zn
q, e←DN

Z,s ∈Zm
q , and t←R

[︁
2B,q−2B

]︁
.

(Here DZ,s denotes the discrete Gaussian distribution
over Z with parameter s, as in Section F.1.)

2. Compute qT← sTA+eT+t ·ηT
i ∈Zm

q , where ηi ∈ZN
q

denotes the ith standard basis vector (i.e., the vector
that is 0 everywhere except 1 in index i).

3. Set st← (d,s, t) and output (st,q).

Answer
(︁
d ∈ Zn

q,x ∈ {0,1}N ⊆ ZN
q ,q ∈ ZN

q
)︁
→ a ∈ Zq

1. Output a← qTx ∈ Zq

Reconstruct(st,a)→{0,1,⊥}
1. Parse the state st as (d,s, t).
2. If there exists k ∈ {0,1} such that |a− sTd− kt|< B,

then output k. Otherwise, output ⊥.

and (a) either the group identity (when the retrieved bit is
zero) or (b) the blinding factor ht associated with the element
of interest (when the retrieved bit is one). If the server returns
any answer apart from the one prescribed by the protocol, the
client detects this and rejects with overwhelming probability.

We then have, by rebalancing Construction 3:

Theorem 11. If the DDH assumption holds in group G, then
Construction 3 is a secure single-server authenticated-PIR
scheme when instantiated with database size N and group
G. The digest size consists in

√
N elements of G and the per-

query communication cost is 2
√

N elements of G. The scheme
has negligible integrity error.

The scheme could be extended to retrieve multi-bit database
entries in two readily-apparent ways. The first and simplest
approach is to run Construction 3 in parallel for each bit of
the entry. The second approach requires the client to solve
tractable discrete logarithms, as we describe in Section G.5.

Incremental digest maintenance. We envision that the data
owner would generate the database digest and publish it on
a client-accessible website or a tamper-resistant log. If a
database record changes, the data owner can update the digest
in either construction incrementally. For example, in the lat-
tice based construction given an old digest d = Ax and a new
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Construction 3 (Single-server authenticated PIR from
DDH). The construction is parametrized by a database
length N ∈ N, a group G of prime order p, and group
elements h1, . . . ,hN ∈ G. The database is a vector x ∈
{0,1}ℓ ⊆ ZN

p .

Digest(x ∈ {0,1}N)→ d ∈G

1. Output d←∏ j∈[N] h
x j
j ∈G.

Query (d ∈G, i ∈ [N])→ (st,q)

1. Sample two random values r, t←R Zp.
2. For j ∈ [N]\{i}, compute q j← hr

j ∈G.

3. Compute qi← hr+t
i ∈G.

4. Set st← (i,d,r, t).
5. Set q← (q1, . . . ,qN) ∈GN .
6. Output (st,q).

Answer
(︁
d ∈G,x ∈ {0,1}N ⊆ ZN

p ,q
)︁
→ a ∈G

1. Parse the query q as (q1, . . . ,qN) ∈GN .
2. Output a←∏ j∈[N] q

x j
j ∈G.

Reconstruct(st,a)→{0,1,⊥}
1. Parse the state st as (i,d,r, t).
2. Set m← d−r ·a ∈G.
3. If m = 1G, output “0.” If m = ht

i , output “1.”
Otherwise, output ⊥.

database x′, the new digest is d′= d+A(x′−x). Given the old
digest, the server can compute the new digest in time propor-
tional to the cost of computing A(x′−x). This matrix-vector
product, in turn, takes time linear in the number of updates
to the database, i.e., the Hamming weight of the difference
x′−x. If the database itself is public, any third party can ver-
ify that the new digest correctly incorporates these updates.
The DDH-based construction supports a similar style of in-
cremental updates. A frequently changing database, however,
requires a client to obtain a fresh and correct digest before
making each PIR query. One possible solution to this is to use
a public log and a timestamping service [86, 89].

6 Implementation

We implemented all of our authenticated-PIR schemes in
roughly 4k lines of Go and 45 lines of C. Our function-secret-
sharing implementations are based on the Function Secret
Sharing (FSS) Library [92]. Our Merkle-tree implementation
is based on the go-merkletree library [87]. We implemented
group operations in our single-server scheme from the DDH
assumption with the CIRCL library [44]. The single-server
scheme built on the LWE assumption uses a plaintext modulus

of 2128 and relies on the uint128 library [26].
We also implemented multi-server unauthenticated-PIR

schemes as baselines for comparison. The multi-server
unauthenticated-PIR scheme, also used in the authenticated-
PIR scheme for point queries, is over the binary field and
uses fastxor [25]. We use the original implementation of
SimplePIR [52] as our single-server PIR baseline.

Our implementation is available under open-source license
at https://github.com/dedis/apir-code.

6.1 Privacy-preserving key directory
To evaluate the practicality of authenticated PIR, we built
Keyd, a PGP public-key directory service that offers (1) clas-
sic key look-ups and (2) computation of statistics over keys.
A key-directory service maps human-memorable identifiers,
such as email addresses, to cryptographic identities (public
keys). Examples of such directories are the MIT PGP Public
Key Server [69], along with the public-key directories that
secure-messaging solutions, such as Signal, implicitly offer.

We implement Keyd in the two-server model, where the
security properties hold as long as at least one server is honest.
The Keyd key service provides the following properties:

• Privacy: The client reveals no information to the servers
about the content of its query.

• Integrity: The client is guaranteed to recover the correct
result for the issued query, i.e., the output of the protocol
is consistent with the honest server’s view.

Prior key-server designs ensure only one of these two prop-
erties. It is possible to add privacy to a key server using
conventional PIR and issue private complex queries using
Splinter [93], or to add integrity as in CONIKS [65]. Prior to
authenticated PIR, we are unaware of any approach that simul-
taneously solves both problems in the presence of malicious
servers, without resorting to trusted hardware [64].

Keyd lays out public keys in the database using a hash table
that maps public keys into fixed-size buckets. To retrieve a
PGP public key, a client hashes the requested email to deter-
mine the corresponding bucket number, queries the servers
for the contents of the bucket, reconstructs and validates the
answers, and finally selects and outputs the key of interest.

To evaluate a predicate query, the client sends the query to
the servers, which apply it to the appropriate PGP key meta-
data. For example, to evaluate a COUNT query on the email
addresses, the client sends SELECT COUNT(*) FROM email

WHERE email = p, where p represents the query parameter
hidden through secret sharing. The AVG query is implemented
using a SUM and COUNT query. We use TLS to protect the
communication between client and servers.

Our Keyd serves a snapshot of SKS PGP key directory [90]
from 24 January 2021. We removed all public keys larger than
8 KiB, a limit that we found excluded only keys with large
attachments, such as JPEG images. We also removed all keys
that had been revoked, keys in an invalid format, and keys
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with no email address in their metadata. We kept only the
primary key of each public key. If multiple keys were linked
to the same email address, we kept only the most recent key.
If a key included multiple emails, we indexed this key using
the primary email. As a result, our Keyd serves a total of
3,557,164 unique PGP keys (≈3 GiB in total), which is more
than half of the keys in the original dump.

7 Experimental evaluation

We experimentally evaluate all of our authenticated-PIR
schemes and the Keyd public-key directory service.

Parameters. We instantiate our multi-server authenticated-
PIR scheme for predicate queries using F4

p with p = 232−1,
yielding a security parameter of approximately 124 bits. This
approach is faster than using a full 128-bit field element, be-
cause of better-optimized libraries and CPU instructions for
operating on 32-bit values. The Merkle-based scheme for
point queries uses BLAKE3 as the hash function. The DDH-
based single-server scheme (§5.2) uses the P256 elliptic curve
as the group. We select the parameters for the LWE-based
schemes (§5.1) to ensure 128-bit of privacy according to cur-
rent estimate of concrete security against known attacks [3].
We present one scheme with integrity error 2−128, and an-
other one that uses integrity amplification (Section 3.3 and
Construction 6), with integrity error 2−64. The scheme with
integrity error 2−128 uses modulus q = 2128 and lattice dimen-
sion n = 4800; the scheme with integrity error 2−64 works
with q = 232 and n = 1100. For both implementations, the
error distribution is the discrete Gaussian distribution with
standard deviation σ = 6.4. Integrity amplification uses the
simple repetition code. We further discuss parameter selection
for the scheme based on integrity amplification in Section H.

Experimental methodology. We perform all the experiments
on machines equipped with two Intel Xeon E5-2680 v3
(Haswell) CPUs, each with 12 cores, 24 threads, and oper-
ating at 2.5 GHz. Each machine has 256 GB of RAM, and
runs Ubuntu 20.04 and Go 1.17.5. Machines are connected
with 10 Gigabit Ethernet. In the experiments for the multi-
server schemes and Keyd (Sections 7.1, 7.2 and 7.4), the client
and the servers run on separate machines. For single-server
schemes we use a single machine that runs both client and
server, as the single-server schemes are inherently sequential.
We always report the time elapsed from query computation to
record reconstruction as user time and the cumulative band-
width from and to the server(s) as bandwidth. We execute
all experiments 30 times and report the median result across
executions. We run all the experiments using a single core for
each physical machine. For consistency across experiments,
we always download the same public-key when evaluating
Keyd. We have published our experimental code and results
in our source-code repository (see Section 6).
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Figure 3: The cost of retrieving a 1 KiB record using classic ("Unau-
thenticated") and authenticated PIR for point queries (§4.1) from two
servers. For this experiment we use a classic PIR scheme based on
distributed point functions [17, 18, 48]. The Merkle proof attached
to each record imposes the bandwidth and user time overheads.

7.1 Multi-server point queries

Fig. 3 presents user time and bandwidth overhead for our
authenticated-PIR scheme for point queries, compared to clas-
sic unauthenticated PIR. Both the user time and the bandwidth
overheads increase as the database size grows. This is due to
each database record requiring an additional Merkle proof of
size O(λ logN), which the client must fetch and verify. We
measure a maximum overhead of 3× for user time and of
1.6× for bandwidth.

Fig. 4 shows the impact of the number of servers on user
time and bandwidth. Since all servers answer in parallel, the
user time increase is almost negligible. For authenticated PIR,
the increase is due to Merkle proof verification. Bandwidth
increases linearly for both schemes, since each server receives
a query and sends an answer. The absolute bandwidth reported
in Fig. 4 is significantly higher than that in Fig. 3, as the
latter uses a state-of-the-art PIR scheme based on distributed
point functions [17, 18, 48] as both unauthenticated scheme
and the underlying PIR scheme for the authenticated version.
Additionally, the database representation differs between the
figures: Fig. 3 uses a vector representation, (one data block per
database row), while Fig. 4 uses a matrix representation (with
multiple blocks stored in a single row to trade off download
complexity for query complexity).

7.2 Multi-server complex queries

When comparing our multi-server authenticated-PIR scheme
for complex queries with classic PIR (Fig. 5), we find that both
the user time and bandwidth overheads of the authenticated
scheme are less than 1.1×. The former comes from the longer
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Figure 4: The cost of retrieving a 1 KiB record using unauthenti-
cated and authenticated PIR for point queries (§4.1) from a variable
number of servers holding a database of 1 GiB. For this experiment
we use a classic PIR scheme based on classic secret-sharing over the
binary field, as schemes based on distributed point functions impose
a query bandwidth exponential in the number of servers and database
length [17].

output of the function-secret-sharing evaluation function—
one F231−1 element versus five elements—and from the veri-
fication of the servers’ answers, absent in the unauthenticated
scheme. For bandwidth, the only difference is the so-called
correction word in the function-secret-sharing key [17, 18],
which is composed of a single field element in classic PIR and
of five elements in authenticated PIR: one for the predicate
evaluation’s result and four for authentication. The servers’
answers have the same ratio: a single field element in the
unauthenticated scheme and five elements in the authenticated
scheme. The bandwidth overhead is thus of a constant factor.
Evaluation with k≥ 3 servers is infeasible as the length of the
keys is O(λ2k/22ℓ/2), where ℓ is the input size in bits [17].

7.3 Single-server point queries
To evaluate our single-server authenticated-PIR schemes, we
compare their performance against SimplePIR [52], the fastest
classic single-server PIR scheme for small records to-date. We
measure the costs of retrieving one data bit from the database.1

We evaluate SimplePIR with its default configuration of 2048-
bit database records. The client downloads a corresponding
record and selects a desired bit from it. The offline bandwidth
indicates the digest for authenticated schemes, and the hint
for SimplePIR, as this scheme is a PIR-with-preprocessing
scheme [10]. We show the results in Fig. 6.

The authenticated-PIR schemes from the decisional Diffie-
Hellman assumption (DDH) and from the learning-with-
errors assumption (LWE) have integrity error 2−128. The
DDH construction has a smaller digest, hence lower offline
1Other recent PIR schemes (e.g., [66, 71]) are competitive only in the large-
record setting (where records are tens of kilobytes long).
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Figure 5: The user time and bandwidth ratios between unauthenti-
cated and authenticated PIR (§4.2) for complex queries when query-
ing two serves for the query SELECT COUNT(*) FROM keys WHERE

email LIKE "%s" from a database composed of 100,000 random
records. The median authentication overhead is less than 1.1× for
both user time and bandwidth; the grey area shows the variance.

bandwidth, but has twice the online bandwidth of the LWE
construction: both have the same asymptotic complexity, but
LWE uses elements from Z2128 and DDH from the elliptic
curve P256, which encodes elements in 256 bits. The LWE
construction is also faster (3-79×): arithmetic computations
in Z2128 are faster than elliptic-curve operations in P256.

The scheme with integrity amplification (LWE+) has in-
tegrity error 2−64 and the same classic-PIR privacy as Sim-
plePIR, except that SimplePIR does not provide privacy under
selective-failure attacks. LWE+ is faster than LWE for the
1 KiB and 1 MiB databases, but slower (1.4×) for the 1 GiB
database: the repetition code requires repeating the protocol
15 times (t = 7). An error correcting code with higher rate,
or parallel execution of the repetition code, could improve
LWE+. SimplePIR is 30-100× faster than LWE+ due to its
preprocessing for reducing online computation and exploit-
ing a faster database representation through packing [52].
The asymptotic online and offline bandwidth overhead of
SimplePIR and authenticated-PIR schemes from the LWE
assumption are the same, but integrity amplification increases
online bandwidth by 2t+1× (Section 3.3), whereas the client
must download the digest only once. Concrete offline band-
width is lower in SimplePIR due to database packing.

The current schemes are computationally costly, but we
expect that future optimizations, such as multi-bit queries, as
outlined in Section G.5, could reduce this cost.

7.4 Application: privacy-preserving key server

In this section, we evaluate our multi-server authenticated-PIR
schemes in the context of the Keyd public-key server.

For classic key look-ups, which are point queries, we mea-
sure the wall-clock time needed to retrieve a PGP public-key
with authenticated PIR (Section 4.1), classic PIR without au-
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Figure 6: The cost of retrieving one data bit using our single-server
authenticated PIR schemes and state-of-the-art classic single-server
PIR scheme SimplePIR [52]. DDH indicates Construction 3 with
2−128-integrity; LWE indicates Construction 2 (q = 2128) with
2−128-integrity; LWE+ indicates Construction 6 (the base scheme is
Construction 2 with q = 232) with 2−64-integrity (see Section 3.3).
DDH takes over an hour to retrieve a data bit from a 1 GiB database
and we omit it from the figure.

thentication, and by direct download without privacy protec-
tion. To measure the latency of direct download, we download
a PGP public-key from the OpenPGP key server using wget.
Both PIR measurements include a manually-added RTT of
0.4 ms (the ping time to the nearest PGP key server). We per-
form all the measurements over the entire processed dataset
of PGP keys (see Section 6). We measure 1.11 seconds for
authenticated PIR, 1.10 seconds for unauthenticated PIR and
0.22 seconds for non-private direct look-up.

The authenticated scheme for point queries shows perfor-
mance comparable to classic PIR without authentication. The
Merkle-proof overhead in this case is smaller than in Fig. 3
due to a larger block size and hence less authentication data
per data bit in Keyd. The OpenPGP key server maintainers
informed us that their service typically handles around 3–10
public-key lookups per second, or less than 1 million requests
per day [21]. A careful multithreaded implementation of our
multi-server authenticated-PIR schemes for point queries can
handle this load with 12 cores, just one more than the number
of cores estimated for classic unauthenticated PIR (11 cores).

To analyze the performance of Keyd in computing private
statistics over keys, we measure user-perceived time and band-
width of different predicate queries. Table 7 shows the results.
For all the predicates, the overhead of authenticated PIR—in
both user-perceived time and bandwidth—is upper bounded
by a factor of 1.05×. This result matches the benchmark pre-
sented in Fig. 5 and is due to the latency being dominated by

Query description User time [s] Bandwidth [KiB]

Unauth. Auth. Unauth. Auth.

COUNT(*) WHERE

email LIKE ’%.edu’ 25.77 25.97 1.01× 1.8 1.9 1.06×
type = ’ElGamal’ 7.52 7.66 1.02× 0.9 1.0 1.11×
YEAR(created) = 2019

AND email LIKE ’%.edu’ 48.28 48.32 1.00× 3.0 3.1 1.03×
AVG(lifetime) WHERE

email LIKE ’%.edu’ 25.74 26.59 1.03× 1.8 1.9 1.05×

Table 7: Performance of different predicate queries on Keyd for
unauthenticated and authenticated PIR (the two-server schemes for
predicate queries). The median authentication overhead is 1.01× for
user time and 1.05× for bandwidth.

the function-secret-sharing evaluation, which is essentially
equal for authenticated and unauthenticated PIR. For band-
width overhead, the same reasoning as in Section 7.2 applies.

8 Related work

Authenticated PIR builds on diverse work on private in-
formation retrieval. Starting with the original proposal [31],
improvements have reduced the communication cost of multi-
server PIR with information-theoretic [8, 9, 42, 96, 98]
or computational security [18, 30]. Kushilevitz and Ostro-
vsky [57] presented the first single-server PIR construction,
and subsequent work reduced communication costs [22, 41,
47, 62, 75]. Recent advances introduced PIR for more com-
plex (e.g., SQL-like) queries [74, 81, 93].

Kushilevitz and Ostrovsky [57] first noted that, in the single-
server setting, the server could violate a client’s privacy by
manipulating database records and observing whether the
client accepted the response as valid. Such attacks have come
to be known as selective-failure attacks [53, 55, 61]. To our
knowledge, we are the first to address selective-failure attacks
in the multi-server setting.

In schemes that resist faulty servers (summarized in Ta-
ble 2), a client can either reconstruct the correct database
entry, or can detect and abort, when servers misbehave. Mul-
tiparty computation literature refers to the former approach
as “full security” and the latter as “security with abort” [50].

Beimel and Stahl [11, 12] first consider malicious or crash-
ing servers in the multi-server setting. Their approach fo-
cuses on ensuring data reconstruction, not detection of server
misbehaviour, and it is further developed by concurrent and
follow-up work [39, 43, 49, 56, 97]. Unlike authenticated PIR,
these approaches require an honest majority in the presence of
malicious servers, with specific thresholds shown in Table 2.

Verifiable PIR in the multi-server setting [99] offers se-
curity properties similar to authenticated PIR, but requires
expensive public-key cryptography. In the single-server set-
ting [94, 100], verifiable PIR is not resistant to selective-
failure attacks and offers a weaker property: it ensures that
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the server answer a query with respect to some database, but
not necessarily the one intended. Our approach ensures that
queries are answered with respect to a specific database, as
determined by the honest server in the multi-server setting, or
by the database digest in the single-server case. In concurrent
work, Ben-David et al. [14] introduce another notion of veri-
fiable PIR in the single-server setting, whose goal is to verify
arbitrary properties on databases, but they do not consider
selective-failure attacks.

Our multi-server scheme for point queries (Section 4.1)
extends a Merkle-tree approach by Kushilevitz and Ostro-
vsky [57]. Our multi-server scheme for predicate queries
builds on function secret-sharing [16, 17, 18, 38], information-
theoretic message authentication codes [33], and malicious-
secure multiparty computation protocols [15, 35].

Prior systems address integrity in private information re-
trieval [36, 70], but do not protect against selective manip-
ulation in the single-server setting, and require additional
assumptions in the multi-server setting.

Prior work has also considered privacy-preserving and
integrity-assuring key directories [27, 28, 65, 68, 91]. In
particular, CONIKS [65] and its improved version SEEM-
less [27], ensure consistency for the bindings thanks to ideas
adapted from transparency log systems [59, 83], but do not
address privacy of the client’s queries.

9 Conclusion

Authenticated PIR enhances the strong privacy properties
of classic PIR with strong data-authentication guarantees.
We have presented formal definitions both in the dishonest-
majority setting—where the security properties hold as long
as at least one of the server is honest—and in the single-server
setting. We suggest some avenues for further improvement:

• Can we construct single-server authenticated-PIR
schemes for a malicious digest (i.e., the client’s output
is consistent with some n-bit database)?

• Can we construct single-server authenticated-PIR
schemes whose performance matches that of the best
unauthenticated schemes?
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A Building blocks for authenticated PIR

In this section, we formally introduce the primitives used by
the different authenticated-PIR schemes: classic multi-server
PIR, Merkle-tree and function secret sharing.

Additional notation. We use SD(·, ·) to denote the statisti-
cal distance between two distributions. The empty string is
denoted with ε. We write D0 ≈c D1 to denote that the distri-
butions D0 and D1 are computational indistinguishable.

A.1 Classic multi-server PIR for point queries
In this section we define standard k-server unauthenticated-
PIR schemes, for k ≥ 2.

Definition 12 (k-server PIR for point queries). A k-server
unauthenticated-PIR scheme for point queries parametrized
by a database length N ∈ N, consists of three efficient, and
possibly randomized, algorithms:

• Query(1λ, i)→ (st,q1, . . . ,qk). Given a security parame-
ter λ, expressed in unary, and an index i∈ [N], return client
state st and queries q1, . . . ,qk.

• Answer(x,q)→ a. Apply query q to database x ∈ {0,1}N

and return answer a.

• Reconstruct(st,a1, . . . ,ak)→ xi. Take as input client state
st and answers a1, . . . ,ak and return the ith record of the
database xi.

A k-server unauthenticated-PIR scheme is required to sat-
isfy the following properties.

Definition 13 (PIR correctness). An unauthenticated-PIR
scheme PIR = (PIR.Query,PIR.Answer,PIR.Reconstruct),
parametrized by a number of servers k ∈ N and a database
size N ∈ N satisfies correctness if for every x ∈ {0,1}N , the
following holds:

Pr

⎡⎢⎣x′i = xi :

(st,{qi}i∈[k])← PIR.Query(i)

a j ← PIR.Answer(x,q j) ∀ j ∈ [k]

x′i← PIR.Reconstruct(st,a1, . . . ,ak)

⎤⎥⎦= 1,

where the probability is computed over all the random coins
used by the algorithms of the scheme.

Definition 14 (PIR security). Let PIR = (PIR.Query,
PIR.Answer,PIR.Reconstruct) be an unauthenticated-PIR
scheme for point queries parametrized by a number of servers
k ∈N and a database size N ∈N. Let S be any subset of k−1
elements from [k]. For i ∈ [N] let the distribution

REALi =

⎧⎨⎩⋃︂
j∈S

q j : (st,q1, . . . ,qk)← PIR.Query(i)

⎫⎬⎭ .

Similarly, for a simulator S , let the distribution

IDEALS =
{︂{︁

q j
}︁

j∈S← S
}︂
.

A classic unauthenticated-PIR scheme PIR =
(PIR.Query,PIR.Answer,PIR.Reconstruct) parametrized
by a database length N ∈N and a number of servers k ∈N is
secure if for every i ∈ [N], the following holds:

REALi ≈c IDEALS .
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In this work, we consider only linear classic PIR schemes.
Many standard PIR schemes are linear [18, 31, 32, 48].

Definition 15 (Linear PIR). Let PIR =
(PIR.Query,PIR.Answer,PIR.Reconstruct) be a clas-
sic PIR scheme for point queries parametrized by a number
of servers k ∈ N and a database size N ∈ N. We say that PIR
is a linear PIR scheme if the Reconstruct algorithm is simply
the sum of the individual severs’ answers.

A.2 Merkle tree

In this section we formally define a Merkle-tree scheme and
we introduce its security properties.

Definition 16. A Merkle-tree scheme M =
(Digest,ProveIncludes,VerifyIncludes), parametrized
by a digest length ℓdig ∈ N and a inclusion proof length
ℓπ ∈ N, for a database x ∈ {0,1}N , N ∈ N, consists of two
possibly randomized algorithms and one deterministic
algorithm:

• Digest(1λ,x) → d. Given a security parameter λ, ex-
pressed in unary, and a database x ∈ {0,1}N , returns a
database digest d ∈ {0,1}ℓdig .

• ProveIncludes(1λ,x, i,xi) → {πi,⊥}. This deterministic
algorithm, on input a security parameter λ expressed
in unary, a database x ∈ {0,1}N , a index i ∈ [N] and
a database record xi ∈ {0,1}, outputs a unique proof
πi ∈ {0,1}ℓπ if xi ∈ x and ⊥ otherwise.

• VerifyIncludes(d, i,xi,πi) → {0,1}. Given a digest d ∈
{0,1}ℓdig , a index i ∈ [N], a database entry xi ∈ {0,1}
and a proof πi ∈ {0,1}ℓπ , outputs 1 if πi proves that the
database represented by the digest d contains the record
xi at position i and 0 otherwise.

A Merkle-tree scheme defined in Theorem 16 is required
to satisfy the following properties.

Definition 17 (Merkle tree correctness). Let M = (Digest,
ProveIncludes,VerifyIncludes) be a Merkle-tree scheme as
defined in Theorem 16, parametrized by a digest length ℓdig ∈
N and a inclusion proof length ℓπ ∈ N, for a database x ∈
{0,1}N , N ∈ N. We say that M satisfies correctness if, for all
i ∈ [N], the following holds:

Pr

⎡⎢⎣b = 1 :

d← Digest(x)
π← ProveIncludes(x, i,xi)

b← VerifyIncludes(d, i,xi,π)

⎤⎥⎦= 1.

Definition 18 (Merkle tree uniqueness). Let M = (Digest,
ProveIncludes,VerifyIncludes) be a Merkle-tree scheme as
defined in Theorem 16, parametrized by a digest length ℓdig ∈
N and a inclusion proof length ℓπ ∈ N, for a database x ∈

{0,1}N , N ∈ N. Let A be an efficient adversary. M ensures
uniqueness if the following holds:

Pr

⎡⎢⎢⎢⎢⎢⎢⎣b = b′ = 1 :

(x, i,xi,πi,π
′
i)← A(1λ,N)

if πi = π
′
i then abort

d← Digest(x)
b← VerifyIncludes(d, i,xi,πi)

b′← VerifyIncludes(d, i,xi,π
′
i)

⎤⎥⎥⎥⎥⎥⎥⎦≤ negl(λ).

Definition 19 (Merkle tree soundness). Let M = (Digest,
ProveIncludes,VerifyIncludes) be a Merkle-tree scheme as
defined in Theorem 16, parametrized by a digest length ℓdig ∈
N and a inclusion proof length ℓπ ∈ N, for a database x ∈
{0,1}N , N ∈ N. Let A be an efficient adversary. M satisfies
soundness if the following holds:

Pr

⎡⎢⎢⎢⎣b = 1 :

(x, i,x∗i ,πi)← A(1λ,N)

if xi = x∗i then abort
d← Digest(x)
b← VerifyIncludes(d, i,x∗i ,πi)

⎤⎥⎥⎥⎦≤ negl(λ).

A.3 Function secret sharing
In this section we formally define the properties of function-
secret-sharing (FSS) schemes [17, 18]. We present the syntax
in Section 4.2.

Definition 20 (FSS correctness). A k-party function secret-
sharing scheme FSS = (Gen,Eval) for a function class F
defined over a field F satisfies correctness if for every x in the
domain of f , the following holds:

Pr

[︄
∑

i∈[k]
Eval( fi,x) = f (x) ∈ F : ( f1, . . . , fk)← Gen(1λ, f )

]︄
= 1.

Definition 21 (FSS security). Let FSS = (Gen,Eval) be a
k-party function secret-sharing scheme for a function class F .
Let S be any subset of k−1 elements from [k]. For a security
parameter λ ∈ N and a function f ∈ F let the distribution

REALλ, f =

{︄⋃︂
i∈S

fi : ( f1, . . . , fk)← Gen(1λ, f )

}︄
.

Similarly, for a simulator S let the distribution

IDEALS ,λ,F =
{︂
{ fi}i∈S← S(1λ,F )

}︂
A k-party function secret-sharing scheme FSS= (Gen,Eval)
for a function class F is secure if there exists a simulator
S such that for every security parameter λ ∈ N and every
function f ∈ F , the following holds:

REALλ, f ≈c IDEALS ,λ,F .
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B Multi-server authenticated PIR definitions

In this section, we present the formal definitions for multi-
server authenticated PIR.

Definition 22 (Authenticated PIR correctness). A k-
server authenticated-PIR scheme Π = (Query,Answer,
Reconstruct) for function class F ⊆ Funs[[N]×{0,1}ℓ,F]
and database size N ∈ N satisfies correctness if for every
X = x1, . . . ,xN ∈ {0,1}ℓ, ℓ ∈ N, w ∈ FN , λ ∈ N, f ∈ F , the
following holds:

Pr

⎡⎢⎢⎢⎢⎢⎢⎣
y = ∑

i∈[n]
wi f (i,xi) :

(st,q1, . . . ,qk)←Query(1λ, f )

a j← Answer(X,w,q j) ∀ j ∈ [k]

y← Reconstruct(st,a1, . . . ,ak)

⎤⎥⎥⎥⎥⎥⎥⎦= 1,

where the probability is computed over all the random coins
used by the algorithms of the scheme.
Definition 23 (Authenticated PIR integrity). A k-
server authenticated-PIR scheme Π = (Query,Answer,
Reconstruct) for function class F ⊆ Funs[[N]×{0,1}ℓ,F]
and database size N ∈ N preserves integrity with er-
ror ε if for every efficient adversary A , and for every
X = x1, . . . ,xN ∈ {0,1}ℓ, ℓ ∈ N, w ∈ FN , λ ∈ N, f ∈ F ,
jgood ∈ [k], the following probability is negligible in the
security parameter λ:

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y ̸∈
{︄

∑
i∈[N]

wi f (i,xi),⊥
}︄

:

(st,q1, . . . ,qk)←Query(1λ, f ){︁
a j
}︁

j ̸= jgood
← A(X,w,{q j} j ̸= jgood )

a jgood ← Answer(X,w,q jgood )

y← Reconstruct(st,a1, . . . ,ak)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ ε,

where the probability is computed over all the random coins
used by the algorithms of the scheme.
Definition 24 (Authenticated PIR privacy). Let Π =
(Query,Answer,Reconstruct) be a k-server authenticated-
PIR scheme for function class F ⊆ Funs[[N]×{0,1}ℓ,F] and
database size N ∈N. For X = x1, . . . ,xN ∈ {0,1}ℓ, ℓ∈N, w∈
FN , λ∈N, f ∈F , jgood ∈ [k], and an adversary A =(A0,A1),
define the distribution

REALA , jgood, f ,λ,X,w =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
β̂ :

(st,q1, . . . ,qk)←Query(1λ, f )

a jgood ← Answer(X,w,q jgood )(︁
stA ,

{︁
a j
}︁

j ̸= jgood

)︁
← A0(X,w,{q j} j ̸= jgood )

y← Reconstruct(st,a1, . . . ,ak)

b← 1{y ̸=⊥}
β̂← A1(stA ,b)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Similarly, for a simulator S = (S0,S1), define the distribution

IDEALA ,S ,F ,λ,X,w =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩β :

(stS ,Q)← S0(1λ,F ,X,w)

(stA ,A)← A0(X,w,Q)

b← S1(stS ,A)

β← A1(stA ,b)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

We say Π is private if for every efficient adversary A =
(A0,A1), and for every X=(x1, . . . ,xN)∈ ({0,1}ℓ)N , w∈FN ,
there exists a simulator S = (S0,S1) such that for all λ ∈ N,
f ∈ F , jgood ∈ [k], the following holds:

REALA , jgood, f ,λ,X,w ≈c IDEALA ,S ,F ,λ,X,w

Remark 25 (Selective-failure attacks). The inclusion of the
acceptance bit in the adversary’s view ensures protection
against selective failure attacks where whether a client accepts
or not leaks information about the client’s query. For example,
in an actual execution of an authenticated-PIR scheme, a ma-
licious server could replace a single record i in the database
with garbage. Now, if the client’s query does not depend on
the value of record i, then everything proceeds normally. How-
ever, if the query does depend on the value of record i, then
it receives a garbage value. Depending on the application,
receiving a garbage value could cause the client to abort the
protocol prematurely, or retry the protocol; in both of these
cases, if the client engages in some kind of recovery mech-
anism, the server immediately learns information about the
client’s chosen index i. Theorem 24 captures security against
selective failure attacks by requiring that the probability of
whether the client’s response is valid or not (i.e., whether
y ̸= ⊥) is not correlated with the client’s query (since the
same simulator works for all functions f and moreover, the
simulator is not provided f as input). In this way, a malicious
server that learns whether the protocol completed successfully
or not still cannot learn anything about the client’s query.

C Multi-server authenticated PIR for point
queries

In this section we present the formal definition of the multi-
server authenticated-PIR scheme for point queries based on
a classic multi-server linear PIR scheme and a Merkle-tree
scheme. In Construction 4, we give the scheme. In the re-
mainder of this section, we give a overview of the strategy
that we use to prove that Construction 4 satisfies integrity and
privacy.

C.1 Overview of the proof strategy
In this section e give a overview of the strategy that we use to
prove integrity and privacy for Construction 4. We describe
the construction with k = 2 servers, but the same intuition
generalizes to k > 2 servers. This overview is inspired by
a private discussion with Brett Falk, Pratyush Mishra, and
Matan Shtepel [84], which pointed out a flaw in the proof of
Theorem 28.

Construction 4 uses a linear classic PIR scheme (Theo-
rem 15), i.e., the PIR.Reconstruct algorithm is the sum of
the individual servers’ answers. In other words, by denoting

19



Construction 4 (k-server authenticated PIR for point
queries tolerating k− 1 malicious servers). The con-
struction is parametrized by a number of servers k ∈ N,
a number of database rows N ∈ N, a row length ℓ ∈ N,
a security parameter λ ∈ N, a Merkle-tree scheme M
(Theorem 16), and a linear PIR scheme PIR (Theo-
rem 15). Weights are ignored in this scheme. We repre-
sent the database as N binary strings of length ℓ each:
x1, . . . ,xN ∈ {0,1}ℓ. The Query algorithm inputs the se-
curity parameter 1λ and an index i ∈ [N]; Reconstruct
outputs either a vector xi ∈ {0,1}ℓ or the rejection sym-
bol ⊥ (see Theorem 2 to recover this functionality from
Theorem 1). The servers execute the first three steps of
the Answer procedure only when the database changes;
we show the entire procedure for completeness.

Query(1λ, i ∈ [N])→ (st,q1, . . . ,qk)

1. (stPIR,q1, . . . ,qk)← PIR.Query(i).
2. Set the state st← (i,stPIR).

3. Output (st,q1, . . . ,qk).

Answer(X = x1, . . . ,xN ∈ {0,1}ℓ,q)→ a

1. Compute the digest root←M.Digest(X).
2. For j ∈ [n], compute πi←M.ProveIncludes(X, j,x j).
3. Enlarge the database with the proofs for all the records

as X′← ((x1,π1), . . . ,(xN ,πN)).
4. Output (root,PIR.Answer(X′,q)).

Reconstruct(st,a1, . . . ,ak)→
{︁
{0,1}ℓ,⊥

}︁
1. Parse the state st as (i,stPIR).
2. For j ∈ [k], parse ak as (rootk,a′k).
3. If the k roots {root j} j∈[k] are not all equal, return ⊥.
4. Run the classic PIR reconstruction algorithm

and parse ri← PIR.Reconstruct(stPIR,a′1, . . . ,a
′
k) as

(xi,πi).
5. If M.VerifyIncludes(root1, i,xi,πi) = ⊥, then output
⊥. Otherwise output xi.

the sum operation with ⊕, we can rewrite the reconstruction
algorithm as

PIR.Reconstruct(stPIR,a′1, . . . ,a
′
k)→ a′1⊕·· ·⊕a′k.

Construction 4 uses PIR.Reconstruct in line 4 of the
Reconstruct procedure.

For the sake of this overview, we consider that the
servers hold a copy of a two-record database X = (x1,x2) ∈
({0,1}ℓ)2, for row length ℓ ∈ N. Suppose that server 1 is ma-
licious and that server 2 is honest, and suppose that server 1
mounts a selective-failure attack by replacing the record x2

with a bogus record x∗2 ∈ {0,1}ℓ, i.e., server 1 uses the bogus
database X∗ = (x1,x∗2) ∈ ({0,1}ℓ)2. After the first three steps
of the Answer procedure in Construction 4, the malicious
server 1 has the following bogus enlarged database:

X′1← ((x1,π1),(x∗2,π
∗
2));

the honest server 2 has the correct enlarged database:

X′2← ((x1,π1),(x2,π2)).

Assume that server 1 sets a honest Merkle root, i.e., server 1
computes root←M.Digest(X); otherwise the client immedi-
ately rejects (line 3 of the Reconstruct procedure).

Given an index i∈{1,2}, the client computes queries q1,q2
using the Query procedure. The two servers compute the
answers as follows:

a1← (root,PIR.Answer(X′1,q1))

a2← (root,PIR.Answer(X′2,q2))

Since the roots are equal, the client runs the
classic PIR reconstruction procedure an gets
ri ← PIR.Reconstruct(stPIR,a′1, . . . ,a

′
k). By the lin-

earity of the classic PIR scheme and by setting
∆ ← PIR.Answer(X′1,q1) ⊕ PIR.Answer(X′2,q1), we
have

ri = a′1⊕a′2 = PIR.Answer(X′1,q1)⊕PIR.Answer(X′2,q2)

= PIR.Answer(X′2,q1)⊕∆⊕PIR.Answer(X′2,q2)

= (xi,πi)⊕∆,

as X′2 is the honest enlarged database. By assumption
the malicious server 1 feeds PIR.Answer with a bogus
database, which implies that ∆ = PIR.Answer(X′1,q1) ⊕
PIR.Answer(X′2,q1) ̸= 0 and therefore that (xi,πi) ̸=
(xi,πi)⊕∆. This in turn implies, by soundness and/or unique-
ness of the Merkle-tree scheme (Theorem 19 and Theorem 18)
that the client rejects the answers in step 5 of the Reconstruct
procedure of Construction 4.

The crux is that the argument holds regardless of whether
the client queried for index i = 1 or i = 2: we do not assume a
specific index in the argument that leads to client’s rejection.
In other words, the client rejects, except with negligible prob-
ability, whenever one of the servers replies with respect to a
bogus database independently from the index that the client
inputs to the Query procedure.

C.2 Security proofs
We prove security for the case of k = 2 servers. All the argu-
ments generalize naturally to the k-server setting with k > 2.

Correctness of the scheme introduced in Construction 4
can be verified by inspection. To prove both integrity and
security, we find it useful to first prove Theorem 26, which
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informally states that if a malicious server deviates from the
prescribed protocol, the Reconstruct algorithm rejects with
high probability.

Lemma 26. Consider the authenticated-PIR scheme in
Construction 4, on record size ℓ ∈ N and with k = 2 servers
for the sake of the proof. Recall that Construction 4 uses a
linear PIR scheme (Theorem 15). Then, for every λ∈N, every
non-zero ∆ ∈ {0,1}ℓdig+ℓ+ℓπ , where ℓdig is the length of the
digest and ℓπ is the length of a Merkle inclusion proof as per
Theorem 16, every database X = x1, . . . ,xN ∈ {0,1}ℓ, and
every index i ∈ [N], the following holds:

Pr

⎡⎢⎢⎢⎢⎣y ̸=⊥ :

(st,q1,q2)←Query(1λ, i)

a1← Answer(X,q1)

a2← Answer(X,q2)

y← Reconstruct(st,a1⊕∆,a2)

⎤⎥⎥⎥⎥⎦≤ negl(λ),

where the probability is computed over all the random coins
used by the algorithms of the scheme. The statement holds also
when the roles of honest and malicious server are inverted.

Proof. We parse ∆ as (∆root,∆x,∆π) where ∆root ∈ {0,1}ℓdig ,
∆x ∈ {0,1}ℓ, and ∆π ∈ {0,1}ℓπ . If ∆root ̸= 0ℓdig then parsing
a1+∆ and a2 yields two different roots and the client immedi-
ately rejects (line 3 of Reconstruct in Construction 4). Hence,
assume the client gets identical roots from the servers, i.e.,
∆root = 0ℓdig . The client therefore receives two honest digests
of the database X = x1, . . . ,xN ∈ {0,1}ℓ.

Assume by contradiction that there is an index i ∈ [N] and
∆ = (∆root,∆x,∆π) where ∆root = 0ℓdig , ∆x ∈ {0,1}ℓ, ∆π ∈
{0,1}ℓπ , and a database X = x1, . . . ,xN ∈ {0,1}ℓ such that

Pr

⎡⎢⎢⎢⎢⎣y ̸=⊥ :

(st,q1,q2)←Query(1λ, i)

a1← Answer(X,q1)

a2← Answer(X,q2)

y← Reconstruct(st,a1⊕∆,a2)

⎤⎥⎥⎥⎥⎦≥ ν,

where ν is non-negligible in the security parameter λ. By the
assumption that the client gets identical roots from the servers,
we can rewrite the above probability as

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
y ̸=⊥ :

(st,q1,q2)←Query(1λ, i)

(i,stPIR)← st

a1 = (root1,a′1)← Answer(X,q1)

a2 = (root2,a′2)← Answer(X,q2)

ri← PIR.Reconstruct(stPIR,a′1⊕ (∆x∥∆π),a′2)

(xi,πi)← ri

y←
{︄
⊥ M.VerifyIncludes(root1, i,xi,πi) =⊥
xi otherwise

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≥ ν.

By the linearity of the classic PIR scheme that Construction 4

uses, we can rewrite the above probability as

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
y ̸=⊥ :

(st,q1,q2)←Query(1λ, i)

a1 = (root1,a′1)← Answer(X,q1)

a2 = (root2,a′2)← Answer(X,q2)

ri← a′1⊕∆x∥∆π⊕a′2
(xi,πi)← ri

y←
{︄
⊥ M.VerifyIncludes(root1, i,xi,πi) =⊥
xi otherwise

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≥ ν.

We now show that if ∆x ̸= 0ℓ, then the malicious servers
breaks soundness of the Merkle-tree scheme (Theorem 19).
Alternatively, if ∆x = 0ℓ, but ∆π ̸= 0ℓπ , then the malicious
server breaks uniqueness of the Merkle-tree scheme (Theo-
rem 18).

We analyze the first case, that is, we assume that ∆x ̸= 0ℓ.
Let A be an adversary in the definition of soundness for a
Merkle-tree scheme (Theorem 19). We show how A can use
∆ = (∆root,∆x,∆π) with ∆root = 0ℓdig , ∆x ̸= 0ℓ, ∆π ∈ {0,1}ℓπ

to break the soundness property of the Merkle-tree scheme
with a non-negligible probability. Given i, ∆, X, the adversary
A proceeds as follows:

1. Construct a query (st,q1,q2)← Query(1λ, i).

2. For k ∈ [2], compute ak = (rootk,a′k)← Answer(X,qk).

3. Compute ri← a′1⊕a′2 and

4. Parses the reconstructed value as ri = (xi,πi).

Algorithm A outputs (X, i,xi⊕∆x,πi⊕∆π) in the soundness
game of Theorem 19. By assumption, the digest is correct and
computed over X. Since ∆x ̸= 0ℓ, we know that

(xi⊕∆x)∥(πi⊕∆π) ̸= xi∥πi.

Moreover, the probability stated in Theorem 19 is equal to the
probability stated in this lemma (i.e., to ν). Since by assump-
tion ν is non-negligible in the security parameter λ, algorithm
A successfully breaks the soundness property of the Merkle-
tree scheme.

We analyze now the second case, that is, we assume that
∆x = 0ℓ and ∆π ̸= 0ℓπ . Let A ′ be an adversary in the definition
of uniqueness for a Merkle-tree scheme (Theorem 18). We
show how A ′ can use ∆ = (∆root,∆x,∆π) with ∆root = 0ℓdig ,
∆x = 0ℓ, ∆π ̸= 0ℓπ to break the uniqueness property of the
Merkle-tree scheme with a non-negligible probability. Given
i, ∆, X, the adversary A ′ proceeds exactly as algorithm A :

1. Construct a query (st,q1,q2)← Query(1λ, i).

2. For k ∈ [2], compute ak = (rootk,a′k)← Answer(X,qk).

3. Compute ri← a′1⊕a′2 and

4. Parses the reconstructed value as ri = (xi,πi).

Algorithm A ′ outputs (X, i,xi,πi,πi⊕∆π) in the uniqueness
game of Theorem 18. Since ∆π ̸= 0ℓπ , we know that πi ̸=
πi⊕∆π. Moreover, the probability stated in Theorem 18 is
equal to the probability stated in this lemma (i.e., to ν). Since
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by assumption ν is non-negligible in the security parameter λ,
A ′ successfully breaks the uniqueness property of the Merkle-
tree scheme.

We now use Theorem 26 to show that the scheme presented
in Construction 4 ensures integrity and security, and is hence
secure.

Theorem 27 (Integrity of Construction 4). The authenticated
PIR scheme of Construction 4 provides integrity.

Proof. This follows directly from Theorem 26.

Theorem 28 (Privacy of Construction 4). The authenticated
PIR scheme of Construction 4 provides privacy.

Proof. Recall that Construction 4 is an authenticated PIR
scheme for point queries: the Query algorithm inputs an index
i ∈ [N] and Reconstruct outputs either a vector xi ∈ {0,1}ℓ
or the rejection symbol ⊥. Theorem 2 shows how to recover
this functionality from Theorem 1.

Let A = (A0,A1) be the adversary of Theorem 24. We
syntactically change the distribution modeling the real world
by introducing an additional variable ∆← a1⊕aA :

REAL’A ,i,λ,X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
β̂ :

(st,q1,q2)←Query(1λ, i)

a j← Answer(X,q j) ∀ j ∈ [2]

stA ,aA ← A0(X,q1)

∆← a1⊕aA

y← Reconstruct(st,a1⊕∆,a2)

b← 1{y ̸=⊥}
β̂← A1(stA ,b)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

where ∆ ∈ {0,1}ℓdig+ℓ+ℓπ , and ℓdig and ℓπ are parameters of
the Merkle-tree scheme (Theorem 16) that Construction 4
uses. Without loss of generality we assume that server 1 is
adversarial, i.e., we assign q1 to the adversary. The proof
holds also if we swap the queries.

We additionally adapt the distribution modeling the ideal
world to the notation that we use in this proof (by renaming Q
to q1, A to aA and ignoring weights w ∈ FN as Construction 4
does):

IDEAL’A ,S ,F ,λ,X =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩β :

(stS ,q1)← S0(1λ,F ,X)

(stA ,aA )← A0(X,q1)

b← S1(stS ,aA )

β← A1(stA ,b)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

For any adversary A = (A0,A1) let a simulator S = (S0,S1)
such that for every λ ∈ N, X = (xi, . . . ,xN) ∈ ({0,1}ℓ)N the
simulator proceeds as follows, where SPIR is the simulator
induced by the classic PIR scheme that Construction 4 uses
(see Theorem 14):

Simulator S0
(︁
1λ,F ,X

)︁
1 : q1← SPIR
2 : stS ← (X,q1)

3 : return (stS,q1)

Simulator S1(stS ,aA)

1 : (X,q1)← stS

2 : ∆← Answer(X,q1)⊕aA

3 : b← 1{∆ = 0}
4 : return b

We now prove that the real and ideal distributions are com-
putationally indistinguishable and hence the scheme presented
in Construction 4 provides privacy. To this end, we define five
hybrid distributions H0, H1, H2, H3, H4:

• H0: This is the distribution REAL’A ,i,λ,X, where we de-
fine ∆← a1⊕aA = Answer(X,q1)⊕aA and the bit b←
1{y ̸=⊥} given as input to the adversary A0 is determined
using the output from the Reconstruct algorithm.

• H1: Same as H0 except the hybrid uses Reconstruct′

instead of the Reconstruct procedure of Construc-
tion 4. Reconstruct′ is the same as Reconstruct, ex-
cept that it computes ri ← a′1 ⊕ a′2 instead of ri ←
PIR.Reconstruct(a′1,a

′
2) in line 4. The difference between

H0 and H1 is boxed in the definition below:

H1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
β̂ :

(st,q1,q2)←Query(1λ, i)

a j← Answer(X,q j) ∀ j ∈ [2]

stA ,aA ← A0(X,q1)

∆← a1⊕aA

y← Reconstruct′(st,a1⊕∆,a2)

b← 1{y ̸=⊥}
β̂← A1(stA ,b)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

• H2: Same as H1 except the hybrid computes the acceptance
bit b by checking whether ∆ = 0. The difference between
H1 and H2 is boxed in the definition below:

H2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
β̂ :

(st,q1,q2)←Query(1λ, i)

a j← Answer(X,q j) ∀ j ∈ [2]

stA ,aA ← A0(X,q1)

∆← a1⊕aA

y← Reconstruct′(st,a1⊕∆,a2)

b← 1{∆ = 0}

β̂← A1(stA ,b)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

• H3: Same as H3 except the adversary gets a query pro-
duced by the simulator SPIR induced by the unauthenti-
cated PIR scheme. The difference between H2 and H3 is
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boxed in the definition below:

H3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β̂ :

(st,_,q2)←Query(1λ, i)

q1← SPIR

a j← Answer(X,q j) ∀ j ∈ [2]

stA ,aA ← A0(X,q1)

∆← a1⊕aA

y← Reconstruct′(st,a1⊕∆,a2)

b← 1{∆ = 0}
β̂← A1(stA ,b)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

• H4: This is the distribution IDEAL’A ,S ,F ,λ,X.

We now argue that each pair of adjacent hybrids is indis-
tinguishable. For j ∈ {0,1,2,3,4}, let Wb the event that the
output of the hybrid experiment Hb is “1.”

• Hybrid H1 is the same as hybrid H0 except H1 uses
Reconstruct′ instead of Reconstruct. As Construction 4
uses a linear classic PIR scheme, these hybrids are equal,
i.e.,

|Pr[W0]−Pr[W1]|= 0.

• Hybrid H2 is the same as hybrid H1 except H2 computes
the acceptance but b by checking whether ∆ = 0. If ∆ =
0ℓdig+ℓ+ℓπ (i.e, a binary string of ℓdig + ℓ+ ℓπ zeros) the
simulator S1 sets b = 1; if ∆ ̸= 0ℓdig+ℓ+ℓπ , then S1 sets
b = 0. By Theorem 26 we know that

|Pr[b← 1{y ̸=⊥}]−Pr[b← 1{∆ = 0}]| ≤ negl(λ),

where the first probability refers to the assignment of bit b
in H1, while the second refers to the assignment of bit b
in H2. As the only difference between the two hybrids is
how they set bit b, we can rewrite the above probability as

|Pr[W1]−Pr[W2]| ≤ negl(λ).

• The only difference between hybrids H2 and H3 is how the
query q1 is sampled, i.e., how the query that the adversary
gets is sampled. By security of the classic unauthenticated
PIR scheme (Theorem 14), we have

|Pr[W2]−Pr[W3]| ≤ negl(λ).

• H4 is a rewriting of H3. In H3, A0 inputs q1← SPIR, where
SPIR if the simulator induced by the classic PIR scheme;
the same happens in H4. In H3, A1 inputs b← 1{∆ = 0}
and the same happens in H4. We show the bridging from
H3 to H4 below, where we rewrite ∆← a1⊕ aA as ∆←
Answer(X,q1) and grey lines can be removed from H′3 to

get H4:

H′3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β̂ :

(st,_,q2)←Query(1λ, i)

q1← SPIR
a j← Answer(X,q j) ∀ j ∈ [2]

stA ,aA ← A0(X,q1)

∆← Answer(X,q1)⊕aA

y← Reconstruct′(st,a1⊕∆,a2)

b← 1{∆ = 0}
β̂← A1(stA ,b)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Since the hybrids are equal we have

|Pr[W3]−Pr[W4]|= 0.

By a standard hybrid argument we conclude that
REAL’A ,i,λ,X ≈c IDEAL’A ,S ,F ,λ,X and therefore

REALA ,i,λ,X ≈c IDEALA ,S ,F ,λ,X.

C.3 Preprocessing costs
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Figure 8: The CPU time that a single server takes to process the
database for the authenticated PIR scheme for point queries (§4.1).
The Merkle-tree computation is not parallelized.

In our multi-server authenticated-PIR scheme for point
queries, the servers must compute a Merkle tree over the N
database entries along with their indexes. The computational
complexity of the preprocessing phase is dominated by the
number N of database records. Fig. 8 shows the CPU time that
a single server takes to compute a Merkle tree for different
database sizes. The current implementation is not parallelized,
but in practice, the Merkle-tree computation can be efficiently
divided into multiple cores.

D Multi-server authenticated PIR
for predicate queries

In this section we analyze our multi-server authenticated-PIR
scheme for predicate queries.
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D.1 Security proofs for multi-server
authenticated PIR for predicate queries

We prove security only for the case of k = 2 servers. All the ar-
guments generalize naturally to the k-server setting with k > 2.
Correctness of the multi-server authenticated PIR scheme for
predicate queries introduced in Construction 1 can be veri-
fied by inspection. To prove integrity and security, we find it
useful to first prove Lemma 29, which states that if an adver-
sary deviates from the prescribed protocol, the Reconstruct
algorithm rejects with high probability.

Lemma 29. Let the authenticated PIR scheme introduced
in Construction 1, where k = 2 for this lemma. Then, for every
database size N ∈N, for every non-zero offset ∆ = (∆m,∆τ)∈
F2, every database X = x1, . . . ,xN ∈ {0,1}ℓ, every vector of
weights w ∈ FN , and function f ∈ F , we have

Pr

⎡⎢⎢⎢⎢⎣y ̸=⊥ :

(st,q1,q2)←Query(1λ, f )

a1← Answer(X,w,q1)

a2← Answer(X,w,q2)

y← Reconstruct(st,a1 +∆,a2)

⎤⎥⎥⎥⎥⎦≤ 1
|F|−1

,

where the probability is computed over all the random coins
used by the algorithms of the experiment. The statement holds
also when the Reconstruct algorithm instead takes as input
(st,a1,a2 +∆).

Proof. Let α←R F\{0}. By construction, we can rewrite the
probability stated in the lemma as

ν = Pr

[︄
α ·
(︄

∑
i∈[N]

wi · f (i,xi)+∆m

)︄
= α · ∑

i∈[N]

wi · f (i,xi)+∆τ

]︄
= Pr [−∆τ +α ·∆m = 0]

The last quantity is the evaluation of a non-zero degree-1
polynomial with coefficients ∆τ and ∆m at a random point
α ←R F \ {0}. Since a non-zero linear polynomial has at
most one root over F\{0}, we conclude that ν ≤ 1

|F|−1 . By
interchanging the roles of a1 and a2, the statement holds
also when the Reconstruct algorithm instead takes as input
(st,a1,a2 +∆).

We now use Theorem 29 to show that the scheme presented
in Construction 1 ensures integrity and security, and hence it
is secure.

Theorem 30 (Integrity of Construction 1). The authenticated
PIR scheme of Construction 1 provides integrity.

Proof. This theorem follows directly from Theorem 29.

Theorem 31 (Privacy of Construction 1). The authenticated
PIR scheme of Construction 1 provides privacy.

Proof. The proofs proceeds exactly as the proof for Theo-
rem 28, with the difference that we use the simulator induced
by the secure function-secret-sharing scheme instead of the
simulator induced by the classic PIR scheme, and we appeal to
Theorem 29 instead of Theorem 26 to conclude the proof.

D.2 Handling functions with larger output

In this section we discuss how to handle functions with larger
output in authenticated PIR for predicate queries.

D.2.1 Scheme

The scheme is described in Construction 5.

Construction 5 (k-server authenticated PIR for predicate
queries for functions whose output is larger than a single
field element tolerating k− 1 malicious servers). The
construction is parametrized by a number of servers k ∈
N, a number of database rows N ∈N, a row length ℓ ∈N,
a finite field F, a security parameter λ, a output length
b∈N, a function class F ⊆Funs[[N]×{0,1}ℓ,Fb] that is
closed under scalar multiplication, and a function-secret-
sharing scheme (FSS.Gen,FSS.Eval) for the function
class F , parametrized bx the security parameter λ. We
represent the database as N binary strings of length ℓ
each: X = x1, . . . ,xN ∈ {0,1}ℓ.
Query

(︁
1λ, f

)︁
→ (st,q1, . . . ,qk)

1. Sample a random field element α←R F\{0}.
2. Set the state st← α.
3. For j ∈ [b], let g j ← α j · f . These functions g j must

exist since the function class F is closed under scalar
multiplication, as in Theorem 7.

4. Compute q1, . . . ,qk← FSS.Gen(1λ, f ) together with
q(i)1 , . . . ,q(i)k ← FSS.Gen(1λ,gi), for i ∈ [b].

5. Output
(︂
st,(q1,q

(1)
1 , . . . ,q(b)1 ), . . . ,(qk,q

(1)
k , . . . ,q(b)k )

)︂
.

Answer
(︁
x1, . . . ,xN ∈ {0,1}ℓ,w ∈ FN ,q

)︁
→ a ∈ Fb+1

1. Parse q as (q f ,q
(1)
g , . . . ,q(b)g ).

2. Compute answer as a f ← ∑i∈[N] wi ·FSS.Eval(q f ,xi)

and ag← ∑ j∈[b]
(︂

∑i∈[N] wi ·FSS.Eval
(︂

q( j)
g ,xi

)︂)︂
.

3. Return a← (a f ,ag).

Reconstruct
(︁
st,a1, . . . ,ak ∈ Fb+1

)︁
→ Fb∪{⊥}

1. Parse the state st as α ∈ F.
2. Compute a← a1 + · · ·+ak ∈ Fb+1.
3. Parse a as (m1, . . . ,mb,τ) ∈ Fb+1.
4. Compute τ′← m1α+m2α2 + · · ·+mbαb ∈ F.
5. If τ = τ′, output (m1, . . . ,mb) ∈ Fb. Otherwise, output
⊥.
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D.2.2 Security analysis

Lemma 32. Let the authenticated PIR scheme introduced
in Construction 5, where k = 2 for this lemma. Then, for every
database size N ∈N, for every non-zero vector (∆0, . . . ,∆b)∈
Fb+1, every database X = x1, . . . ,xN ∈ {0,1}ℓ, every vector
of weights w ∈ FN , and every function f ∈ F , the following
holds:

Pr

⎡⎢⎢⎢⎣y ̸=⊥ :

(st,q1,q2)←Query(λ, f )

a1← Answer(X,w,q1)

a2← Answer(X,w,q2)

y← Reconstruct(st,a1 +∆,a2)

⎤⎥⎥⎥⎦≤ b
|F|−1

,

where the probability is computed over all the random coins
used by the algorithms of the scheme. Without loss of gener-
ality, the statement holds also when the roles of honest and
malicious server are inverted.

Proof. Let α←R F\{0}. Let

y = (m1, . . . ,mb)← ∑
i∈[N]

wi · f (i,xi) ∈ Fb.

Then the probability stated in the lemma is

ν = Pr

[︄
∑
j∈[b]

(m j +∆ j)α
j = ∆0 + ∑

j∈[b]
m jα

j

]︄

= Pr

[︄
−∆0 + ∑

j∈[b]
∆ jα

j = 0

]︄
.

This last quantity is the evaluation of a non-zero polynomial
(whose coefficients are the ∆ values) at a random point α←R
F\{0}. Since such a non-zero polynomial of degree at most
b can have at most b roots over F, we have that ν ≤ b

|F|−1 .
By interchanging the roles of a0 and a1, the statement holds
also when the Reconstruct algorithm instead takes as input
(st,a1,a2 +∆).

Theorem 33 (Integrity of Construction 5). The authenticated
PIR scheme of Construction 5 provides integrity.

Proof. The theorem follows directly from Theorem 32.

Theorem 34 (Security of Construction 5). The authenticated
PIR scheme of Construction 5 provides privacy.

Proof. The strategy is as in the proof of Theorem 31, except
that we appeal to Theorem 32 to complete the argument.

E Definition of single-server authenticated PIR

In this section we present the formal definitions of single-
server authenticated PIR.

E.1 Definitions
Definition 35 (Single-server authenticated PIR correct-
ness). A single-server authenticated-PIR scheme (Digest,
Query,Answer,Reconstruct) satisfies correctness if for every
database x ∈ {0,1}N , i ∈ [N], and λ ∈N, the following holds:

Pr

⎡⎢⎢⎢⎢⎣x′i = xi :

d←Digest(1λ,x)

(st,q)←Query(d, i)

a← Answer(d,x,q)

x′i← Reconstruct(st,a)

⎤⎥⎥⎥⎥⎦≥ 1−negl(λ),

Definition 36 (Single-server authenticated PIR integrity).
A single-server authenticated-PIR scheme (Digest,Query,
Answer,Reconstruct) has integrity error ε if for every effi-
cient (non-uniform) adversary A , every database x ∈ {0,1}N ,
and index i ∈ [N],

Pr

⎡⎢⎢⎢⎢⎣x′i ̸∈ {xi,⊥} :

d←Digest(1λ,x)

(st,q)←Query(d, i)

a∗← A(d,x,q)

x′i← Reconstruct(st,a∗)

⎤⎥⎥⎥⎥⎦≤ ε(λ)+negl(λ),

where the probability is only taken over the choice of query
randomness2. We say the scheme provides integrity if it has
integrity error 0.

Remark 37 (On non-uniform hardness). As written, Theo-
rem 36 requires integrity to hold against non-uniform adver-
saries. This version of the assumption explicitly captures the
fact that the probability of an integrity failure is only taken
over the randomness of query generation (and not the ad-
versary). Thus, a malicious server cannot induce correlated
integrity failures across multiple independently-generated
queries. This property is very useful for our integrity amplifi-
cation transformation (Section E.2). We could also consider a
more complex (multi-query) variant of this assumption that
applies to both uniform and non-uniform adversaries (and
which suffices for the transformation in Section E.2). For sim-
plicity of exposition, we opt to give the stronger, but simpler-
to-describe non-uniform notion here.

Definition 38 (Single-server authenticated PIR privacy).
Let (Digest,Query,Answer,Reconstruct) be a single-server
authenticated-PIR scheme. For a security parameter λ ∈ N,
a database x ∈ {0,1}N , an index i ∈ [N], and an adversary
A = (A0,A1), define the distribution

REALA ,x,i,λ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
β̂ :

d←Digest(1λ,x)

(st,q)←Query(d, i)

(stA ,a
∗)← A0(d,x,q)

x′i← Reconstruct(st,a∗)

b← 1{x′i ̸=⊥}
β̂← A1(stA,b)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

2Note that since the adversary is allowed to take non-uniform advice, we can
assume without loss of generality that the adversary is deterministic (and
incur at most a constant loss in advantage).
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Similarly, for a simulator S = (S0,S1), define the distribution

IDEALA ,S ,x,λ :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
β :

d←Digest(1λ,x)

(stS ,q)← S0(d,x)

(stA ,a
∗)← A0(d,x,q)

b← S1(stS ,a∗)

β← A1(stA ,b)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

An authenticated PIR scheme (Digest,Query,Answer,
Reconstruct) has privacy if for every adversary A = (A0,A1)
there exists a simulator S = (S0,S1) such that for every
database length N = N(λ), database x ∈ {0,1}N , index i ∈
[N], the following holds:

|Pr[REALA ,x,i,λ = 1]−Pr[IDEALA ,S ,x,λ = 1]| ≤ negl(λ).

Remark 39 (Adaptive notions of privacy). We could also
consider stronger versions of privacy (Theorem 38) where the
adversary chooses the query adaptively after seeing the digest.
In both of our single-server authenticated-PIR constructions
(Constructions 2 and 3), the digest is a deterministic function
of the database, and hence, choosing the query adaptively
does not help the adversary. For this reason, we opt to give
the (simpler) privacy definition.

E.2 Amplifying integrity
Later on, we will construct lattice-based authenticated-PIR
schemes (Construction 2) that has privacy but that have notice-
able integrity error ε = 1/poly(λ). Here, we show to combine
a secure authenticated-PIR scheme with integrity error ε with
any error-correcting code to obtain a private scheme with
negligible integrity error:

• The server first encodes each database record with an error-
correcting code. Suppose each encoded record is n bits.
The server constructs n databases where the jth database
contains the jth bit of the codeword for each record.

• To retrieve a record i, the client makes n authenticated
PIR queries to obtain the n bits of the codeword encoding
record i. Let y1, . . . ,yn be the responses. If y j =⊥ for any
j ∈ [n], the client rejects with output ⊥. Otherwise, the
client decodes y = y1 · · ·yn to obtain the record.

If the error-correcting code supports decoding codewords
with up to t errors and the authenticated-PIR scheme has
integrity error ε, then the integrity error of this construction is
at most εt+1. Specifically, to compromise integrity, the server
must corrupt at least t +1 bits y j. Integrity of the underlying
scheme ensures that the probability the adversary succeeds in
corrupting y j is at most ε. Each query is independent, so the
server’s success probability is now εt+1.

A basic instantiation of this paradigm is to instantiate us-
ing a repetition code where the encoding of a bit b ∈ {0,1}
simply consists of 2t + 1 copies of b. This basic repetition

code supports correcting up to t errors so the integrity er-
ror is now εt+1. Setting t = λ/ε then yields a construction
with negligible integrity error. When the database records are
longer (e.g., field elements instead of bits), we can use better
error-correcting codes with higher rate compared to the basic
repetition code. This allows amplifying integrity with fewer
repetitions. In the following, we describe the construction
more formally that supports multi-bit records over any field:

Definition 40 (Error-correcting code). A (k,n)-error-
correcting code over a finite field F that can correct up to t
errors consists of two efficient and deterministic algorithms:

• Encode(x)→ y: The encoding algorithm takes a message
x ∈ Fk and outputs a codeword y ∈ Fn.

• Decode(y)→ x: The decoding algorithm takes a code-
word Fn and outputs a message x ∈ Fn.

Moreover, for all x∈ Fk, y← Encode(x), and all y′ ∈ Fn such
that yi = y′i for all but at most t indices i∈ [n],Decode(y′) = x.

Construction 6 shows how to use an error-correcting code
to amplify the integrity of a single-server PIR scheme. Cor-
rectness of Construction 6 follows by construction. Thus, we
focus on analyzing integrity and security.

E.2.1 Integrity of Construction 6

Theorem 41 (Integrity of Construction 6). If PIR0 is secure
and provides ε-integrity and ECC is an error-correcting code
that can correct up to t errors, then Construction 6 (instanti-
ated with PIR0 and ECC) provides εt+1-integrity.

Proof. Take any database x ∈ (Fk)
N , an index i ∈ [N], and

any efficient adversary A . Write x = (x1, . . . ,xN) and let
yi ← Encode(xi) for each i ∈ [n]. Let z j ← (y1, j, . . . ,yn, j)

and let d ← Digest(1λ,x). Then d = (d1, . . . ,dn) where
d j ← Digest0(1λ,z j). Let (st,q)← Query(d, i) where st =
(st1, . . . ,stn), q = (q1, . . . ,qn), and (st j,q j)← Query0(d j, i).
Let a∗ = (a∗1, . . . ,a

∗
n) be the adversary’s response in the in-

tegrity experiment. Let y′j← Reconstruct0(st j,a∗j). Consider
now the output of x′← Reconstruct(st,a∗):

• Suppose there exists j ∈ [t] such that y′j =⊥. Then x′ =⊥.

• Suppose y′j = yi, j for all but at most t indices j ∈
[n]. Since ECC can correct up to t errors, x′ =
Decode((y′1, . . . ,y

′
j)) = xi.

• Suppose there are at least t +1 indices j ∈ [n] where y′j /∈{︁
yi, j,⊥

}︁
. By integrity of PIR0, for each j ∈ [n],

Pr
[︁
y′j /∈

{︁
yi, j,⊥

}︁]︁
≤ ε(λ)+negl(λ).

Moreover, this probability is taken only over the choice of
the query randomness q j. Since the queries q1, . . . ,qn are
sampled independently, the probability that there exists t +
1 indices j where y′j /∈

{︁
yi, j,⊥

}︁
is at most εt+1 +negl(λ).
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Construction 6 (Amplifying integrity of single-server
authenticated PIR). Let ECC= (Encode,Decode) be
a (k,n)-error-correcting code over a finite field F that
can correct up to t errors. Let PIR0 = (Digest0,Query0,
Answer0,Reconstruct0) be a secure single-server authen-
ticated PIR scheme for records in F and which provides
ε-integrity. We construct a new single-server authenti-
cated PIR scheme from PIR0 with records in Fk.

Digest(1λ,x ∈ (Fk)
N
)→ d

1. Parse x = (x1, . . . ,xN) where x1, . . . ,xN ∈ Fk.
2. For each i ∈ [N], let yi ← Encode(xi) ∈ Fn. Write

yi = (yi,1, . . . ,yi,n).
3. For each j ∈ [n], let z j = (y1, j, . . . ,yn, j) ∈ FN .

4. For each j ∈ [n], compute d j ← Digest0(1λ,z j) and
output d = (d1, . . . ,dn).

Query (d, i ∈ [N])→ (st,q)

1. For each j ∈ [n], sample (st j,q j)← Query0(d j, i).
2. Output st= (st1, . . . ,stn),q = (q1, . . . ,qn).

Answer
(︂

d,x ∈ (Fk)
N
,q
)︂
→ a

1. Parse d = (d1, . . . ,dn) and q = (q1, . . . ,qn).
2. For each j ∈ [n], compute z j ∈ FN from x using the

same procedure as Digest.
3. For each j ∈ [n], compute a j ← Answer0(d j,z j,q j)

and output a = (a1, . . . ,an).

Reconstruct(st,a)→ Fk ∪{⊥}
1. Parse the state st = (st1, . . . ,stn) and the responses

a = (a1, . . . ,an).
2. For each j ∈ [n], compute y j← Reconstruct0(st j,a j).
3. If there exists j ∈ [n] such that y j =⊥, output ⊥.
4. Otherwise, let y = (y1, . . . ,yn) and output Decode(y).

By the above analysis, we conclude that

Pr[x′ /∈ {xi,⊥}]≤ ε
t+1 +negl(λ),

and the claim holds.

E.2.2 Privacy of Construction 6

Theorem 42 (Privacy of Construction 6). If PIR0 provides
privacy, then Construction 6 (instantiated with PIR0) provides
privacy.

Proof. Take any database x ∈ (Fk)
N , an index i ∈ [N], and

any efficient adversary A = (A0,A1). Let S ′ = (S ′0,S ′1) be the
simulator for PIR0. We use (S ′0,S ′1) to construct a simulator
S = (S0,S1) for the transformed scheme:

Simulator S0
(︁
1λ,d,x

)︁
1 : parse d as (d1, . . . ,dn)

2 : parse x as (x1, . . . ,xn)

3 : yi← Encode(xi) ∀i ∈ [N]

4 : for all j ∈ [n]:

5 : z j← (y1, j, . . . ,yn, j)

6 : (st j,q j)← S ′0(1
λ,d j,z j)

7 : stS ← (st1, . . . ,stn)

8 : q← (q1, . . . ,qn)

9 : return (stS ,q)

Simulator S1(stS ,a∗)

1 : parse stS as (q1, . . . ,qn)

2 : parse a∗ as (a∗1, . . . ,a
∗
n)

3 : b j← S ′1(st j,a∗j) ∀ j ∈ [n]

4 : b← 1
{︁
∀ j ∈ [n] : b j = 1

}︁
5 : return b

We show that the real distribution REALA ,x,i,λ and ideal dis-
tribution IDEALA ,S ,x,λ are computationally indistinguishable.
We define a sequence of hybrid experiments:

• H0: This is the real distribution REALA ,x,i,λ:

– The challenger starts by parsing x = (x1, . . . ,xn) and
computes yi ← Encode(xi) for each i ∈ [N]. Then it
forms z j = (y1, j, . . . ,yn, j) for each j ∈ [n]. It computes
d j← Digest0(1λ,z j) and sets d j = (d1, . . . ,dn).

– The challenger then samples (st j,q j)←Query0(d j,z j).
It define q = (q1, . . . ,qn) and gives (d,x,q) to A .

– The adversary responds with a∗ = (a∗1, . . . ,a
∗
n).

For each j ∈ [n], the challenger computes y j ←
Reconstruct0(st j,a∗j).

– Then it computes b← 1
{︁
∀ j ∈ [n] : y j ̸=⊥

}︁
and gives

b to A .

– The output of the experiment is A’s output.

• H1: Same as H0 except after the challenger com-
putes y1, . . . ,yn from a∗, the challenger computes b j ←
1
{︁

y j ̸=⊥
}︁

. Then, it sets b← 1
{︁
∀ j ∈ [n] : b j = 1

}︁
.

• H2: Same as H1 except the challenger computes
(st j,q j)← S ′0(1λ,d j,z j) for each j ∈ [N]. After the adver-
sary responds with a∗ = (a∗1, . . . ,a

∗
n), the challenger com-

putes b j as b j← S ′1(st j,a∗j). This is the ideal distribution
IDEALA ,S ,x,λ.

The difference between H0 and H1 is syntactic and their out-
puts are identically distributed. Hybrid H1 and H2 are com-
putationally indistinguishable by security of PIR0; formally,
this follows by a sequence of n hybrid experiments where
in experiment j, we switch to using the PIR0 simulator S ′ to
simulate the query q j and the response bit b j.

F Single-server authenticated PIR from LWE

In this section, we analyze Construction 2.
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F.1 Lattice preliminaries

For a real value s > 0, we write ρs : R → R+ to denote
the Gaussian function ρs(x) := exp(−πx2/σ2). The discrete
Gaussian distribution DZ,s with width parameter s is a discrete
distribution over the integers with probability mass function

Pr[X = x : X ← DZ,s] =
ρs(x)

∑y∈Z ρs(y)
.

We say that a distribution D (over R) is subgaussian with
parameter s if for every t ≥ 0,

Pr[|x|> t : x← D]≤ 2exp(−πt2/s2). (1)

The discrete Gaussian distribution DZ,s is subgaussian with
parameter s. In particular, this means that if we sample e←
DZ,s, then |e| ≤

√
λs with probability 1−negl(λ). Moreover,

if x1,x2 are independent subgaussian random variables with
parameters s1,s2, then x = αx1 + βx2 is subgaussian with

parameter
√︂

α2s2
1 +β2s2

2 for any α,β ∈ R.
In the following description, unless otherwise noted, all

operations are performed overZq. For a value x∈Zq, we write
|x| to denote the absolute value of its canonical representative
in the interval Z∩ [−q/2,q/2].

F.2 The learning-with-errors assumption
We now recall the learning with errors assumption [82]:

Definition 43 (Learning with Errors [82]). Let λ be a security
parameter. Let n = n(λ) be the lattice dimension, m = m(λ)
be the number of samples, q = q(λ) be a modulus, and s =
s(λ) be a Gaussian width parameter. Then, the learning with
errors (LWE) assumption LWEn,m,q,s states that the following
distributions are computationally indistinguishable:

(A,sTA+ eT)≈c (A,uT),

where A←R Zn×m
q , s←R Zn

q, e← Dm
Z,s, and u←R Zn

q.

The security of our construction will rely on the “extended
LWE” assumption [20], which essentially says that LWE
holds even if the distinguisher learns a linear combination
of the LWE errors. We state the assumption below:

Definition 44 (Extended LWE [20]). Let λ be a security pa-
rameter and let n = n(λ), m = m(λ), q = q(λ), and s = s(λ)
be lattice parameters (as in Theorem 43). Then, the extended
learning with errors (extLWE) assumption extLWEn,m,q,s
states that for every x ∈ {0,1}m, the following distributions
are computationally indistinguishable:

(A,sTA+ eT,eTx)≈c (A,uT,eTx),

where A←R Zn×m
q , s←R Zn

q, e← Dm
Z,s, and u←R Zn

q. More pre-

cisely, for an adversary A , we write Adv
(n,m,q,s)
extLWE [A ] to denote

the distinguishing advantage of A for the aforementioned
distributions.

Previously, Brakerski et al. [20, Lemmas 4.3, 4.7] showed
that hardness of the extended LWE assumption extLWEn,m,q,s
can be based on the hardness of the vanilla LWE assumption
LWEn,m,q,s′ for s′ = O(s).

F.3 Correctness

Theorem 45 (Correctness of Construction 2). If B≥
√

λNs,
then Construction 2 is correct.

Proof. Take any database x ∈ {0,1}N and index i ∈ [N]. Let
d = Ax be the digest, qT = sTA+eT+ t ·ηT

i be the query, and
a← qTx be the response. Then, we have

a− sTd− xit = qTx− sTd− xit

= sTAx+ eTx+ t ·ηT
i x− sTAx− xit

= eTx. (2)

Since the components of e are independent discrete Gaussian
random variables with parameter s, eTx is subgaussian with
parameter ∥x∥ · s≤

√
Ns since x ∈ {0,1}N . By Eq. (1),

Pr[|eTx|< B : e← DN
Z,s]≥ Pr[|eTx| ≤

√
λNs : e← DN

Z,s]

= 1−negl(λ). (3)

To complete the proof, we show that |a− sTd− (1−xi)t| ≥ B.
By Eq. (2),

|a− sTd− (1− xi)t|= |eTx+(1−2xi)t|.
By Eq. (1), |eTx|< B with overwhelming probability. Since
1− 2xi ∈ {−1,1} and t ∈ [2B,q− 2B], with overwhelming
probability over the choice of e, we have eTx+(1−2xi)t ∈
[B,q−B], or equivalently, |eTx+(1−2xi)t| ≥ B.

F.4 A key lemma

Lemma 46. Let λ be a security parameter, x ∈ {0,1}N be a
database, i ∈ [N] be an index, and A be an adversary. Con-
sider Construction 2 and define distributions D(0)

A ,x,i,λ, D(1)
A ,x,i,λ:

Distribution D(0)
A ,x,i,λ

1 : d←Digest(1λ,x)
2 : (st,q)←Query(d, i)
3 : (stA ,a

∗)← A(d,x,q)
4 : x′i← Reconstruct(st,a∗)

5 : return x′i

Distribution D(1)
A ,x,i,λ

1 : d←Digest(1λ,x)

2 : q←R ZN
q ,e← DN

Z,s

3 : (stA ,a
∗)← A(d,x,q)

4 : t←R [2B,q−2B]

5 : uT← qT− t ·ηT
i

6 : â∗← a∗−uTx+ eTx
7 : if |â∗|< B then
8 : x′i← 0

9 : elseif |â∗− t|< B then
10 : x′i← 1

11 : else x′i←⊥
12 : return x′i
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Suppose the extLWEn,N,q,s assumption holds and H is mod-
eled as a random oracle. Then, for every database length
N = N(λ), database x ∈ {0,1}N , index i ∈ [N], and every ad-
versary A running in time t = t(λ), there exists an adversary
B running in time poly(t) such that

|Pr[D(0)
A ,x,i,λ = 1]−Pr[D(1)

A ,x,i,λ = 1]| ≤ Adv
(n,N,q,s)
extLWE [B].

Proof. Fix a database x ∈ {0,1}N , an index i ∈ [N], and any
efficient adversary A . In the following analysis, we write
ai ∈ Zn

q to denote H(i) and we model H as a random oracle
(which the reduction algorithm is allowed to program [13]).
We now define a sequence of hybrid experiments:

• H0: This is the distribution D(0)
A ,x,i,λ. In this distribution, the

output x′i is computed via x′i← Reconstruct(st,a∗).

• H1: Same as H0 except the challenger changes how x′i is
computed. Instead of computing x′i← Reconstruct(st,a∗),
the challenger sets x′i as follows:

– If |a∗−(sTA+eT)x+eTx−kt|< B for k ∈ {0,1}, then
x′i← k.

– Otherwise, the challenger sets x′i←⊥.

• H2: Same as H1 except the challenger replaces sTA+ eT

with a uniform random vector uT←R ZN
q . Specifically, the

challenger computes qT← uT+ t ·ηT
i and x′i as follows:

– If |a∗−uTx+ eTx−kt|< B for k ∈ {0,1}, then x′i← k.

– Otherwise, the challenger sets x′i←⊥.

• H3: Same as H2 except the challenger samples q←R ZN
q .

Then, after the adversary outputs the response a∗, it sam-
ples t ←R [2B,q− 2B] and sets uT ← qT− t ·ηT

i . The re-
sponse a′i is computed exactly as in H2. This is the distri-
bution D(1)

A ,x,i,λ.

To complete the proof, we now show that each adjacent pair
of distributions is indistinguishable.

• Hybrids H0 and H1 are identical distributions. In both ex-
periments, d = Ax, qT = sTA+eT+ t ·ηT

i and st= (d,s, t).
Let a∗ be the adversary’s response in H0 and consider the
value of x′i← Reconstruct(st,a∗). Let z = a∗− sTd. Then,

z = a∗− sTd = a∗− sTAx
= a∗− (sTA+ eT)x+ eTx

In H0, the challenger outputs k ∈ {0,1} if |a∗−sTd−kt|=
|z− kt| < B and ⊥ otherwise. By the above calculation,
this precisely coincides with the procedure in H1.

• Hybrids H1 and H2 are computationally indistinguishable
under the extLWEn,N,q,s assumption and modeling H as a
random oracle. To see this, suppose there exists an efficient

adversary A that is able to distinguish hybrids H1 and H2
with non-negligible advantage. We use A to construct an
adversary B that breaks the extended LWE assumption:

1. At the beginning of the game, algorithm B receives an
extended LWE challenge (A,zT,y) where A ∈ Zn×N

q ,
z ∈ ZN

q , and y ∈ Zq.

2. Let a1, . . . ,aN ∈ Zn
q be the columns of A. Algorithm B

programs the random oracle H(i) ↦→ ai for each i ∈ [N].
If A ever queries H on an input k /∈ N, algorithm B
samples a random rk ←R Zn

q and defines the mapping
H(k) ↦→ rk.

3. Algorithm B now constructs the digest d←Ax as in H1
and H2. To construct the query, algorithm B samples
t←R [2B,q−2B] and sets qT← zT+ t ·ηT

i . It gives the
digest d, the database x, and the query q to A .

4. Algorithm A outputs a response a∗. Algorithm B com-
putes x′i as follows:

– If |a∗−zTx+y−kt|< B for k ∈ {0,1}, then x′i← k.

– Otherwise, x′i←⊥.

5. Algorithm B replies to A with x′i and outputs whatever
A outputs.

Since A←R Zn×N
q , the outputs of the random oracle are

correctly simulated. Corresponding, algorithm B perfectly
simulates the distribution of the digest d for A . We now
consider the two possible challenge distributions:

– Suppose zT = sTA+ eT and y = eTx. Then the query q
and the response x′i are distributed exactly as in H1.

– Suppose zT←R ZN
q and y = eTx. Then, the query q and

the response x′i are distributed exactly as in H2.

We conclude that algorithm B breaks the extended LWE
assumption with the same distinguishing advantage as A
and the claim follows. More precisely, we can write Hi(A)
to denote the output of a distinguisher A on input a sample
from Hi. Then our reduction shows that for all adversaries
A running in time t, there exists an adversary B running
in time poly(t) such that

Adv
n,N,q,s
extLWE[B]≥ |Pr[H1[A ] = 1]−Pr[H2[A ] = 1]|.

• Hybrids H2 and H3 are identically distributed. In H2, q =
u+ t ·ηi where u←R ZN

q and u is sampled independently
of all other quantities. Thus, the distribution of q in H2
is uniform over ZN

q , which matches the distribution in H3.
In both experiments, u = q− t ·ηi, where t ←R [2B,q−
2B].
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F.5 Integrity
Theorem 47 (Integrity of Construction 2). Suppose the
extLWEn,N,q,s assumption holds and H is modeled as a ran-
dom oracle. Then, Construction 2 (instantiated with param-
eters n,N,q,s,B and hash function H) has integrity error at
most ε = (2B−1)/(q−4B+1).

Proof. Fix a database x ∈ {0,1}N , an index i ∈ [N], and any
efficient adversary A . We now define a sequence of hybrid
experiments:

• H0: This is the real integrity game.

• H1: Same as H0 except the challenger samples q←R ZN
q

and e← DN
Z,s. Then, after the adversary outputs the re-

sponse a∗, the challenger samples t ←R [2B,q− 2B] and
sets uT← qT−t ·ηT

i . If |a∗−uTx+ eTx− kt|<B for some
k ∈ {0,1}, then the challenger sets x′i← k. Otherwise, the
challenger sets x′i←⊥.

• H2: Same as H1 except the challenger changes how it
computes x′i:

– If |a∗−uTx+ eTx− xit|< B, then x′i← xi.

– Otherwise, the challenger sets x′i←⊥.

Specifically, in H2, it is guaranteed that x′i ∈ {xi,⊥}.
We now show that the outputs of each adjacent pair of hybrid
distributions are computationally indistinguishable:

• Hybrids H0 and H1 are computationally indistinguishable
by Theorem 46.

• The statistical distance between H1 and H2 is at most (2B+
1)/(q−4B+1). By construction, the two experiments are
identical unless

|a∗−uTx+ eTx− (1− xi)t|< B. (4)

Now, u = q− t ·ηi, so

a∗−uTx+ eTx− (1− xi)t = a∗−qTx+ eTx− (1−2xi)t.

Since 1− 2xi ∈ {−1,1}, there are at most 2B− 1 values
of t ∈ Zq for which Eq. (4) holds. Since t is sampled uni-
formly at random from a set of size q−4B+1 and inde-
pendently of a∗, u, x, and e, the probability that t lands in
the interval of size 2B−1 is at most (2B−1)/(q−4B+1).
Correspondingly, the statistical distance between H1 and
H2 is (2B−1)/(q−4B+1).

By construction, the output x′i in H2 is guaranteed to be either
xi or ⊥. By a hybrid argument, in the real integrity game H0,
it must be the case that

Pr[x′i ∈ {xi,⊥}]≤
2B−1

q−4B+1
+negl(λ),

which proves the claim.

F.6 Privacy

Theorem 48 (Privacy of Construction 2). Suppose the
extLWEn,N,q,s assumption holds and H is modeled as a ran-
dom oracle. Then, Construction 2 (instantiated with parame-
ters n,N,q,s,B and hash function H) provides privacy. More
precisely, for every adversary running in time t = t(λ), there
exists an adversary B running in time poly(t) such that

|Pr[REALA ,x,i,λ = 1]−Pr[IDEALA ,S ,x,λ = 1]| ≤Adv
n,N,q,s
extLWE[B],

where REALA ,x,i,λ and IDEALA ,S ,x,λ are the distributions de-
fined in Theorem 38.

Proof. Fix a database x ∈ {0,1}N , an index i ∈ [N], and any
efficient adversary A = (A0,A1). We construct an efficient
simulator S = (S0,S1) as follows:

Simulator S0
(︁
1λ,d,x

)︁
1 : q←R ZN

q ,e← DN
Z,s

2 : stS ← qTx− eTx
3 : return (stS ,q)

Simulator S1(stS ,a∗)

1 : if |a∗− stS |< B, b← 1

2 : else, sample t←R [2B,q−2B]

3 : and b← 1{|a∗− stS − t|< B}
4 : return b

We show that the real distribution REALA ,x,i,λ and ideal dis-
tribution IDEALA ,S ,x,λ are computationally indistinguishable.
We define a sequence of hybrid experiments:

• H0: This is the real distribution REALA ,x,i,λ. In this
distribution, the response x′i is computed via x′i ←
Reconstruct(st,a∗).

• H1: Same as H0 except the challenger samples q←R ZN
q

and e← DN
Z,s. Then, after the adversary outputs the re-

sponse a∗, the challenger samples t ←R [2B,q− 2B] and
sets uT← qT−t ·ηT

i . If |a∗−uTx+ eTx− kt|<B for some
k ∈ {0,1}, then the challenger sets x′i← k. Otherwise, the
challenger sets x′i←⊥.

• H2: Same as H1, except instead of computing x′i, the
challenger sets b = 1 if |a∗ − qTx + eTx| < B. Oth-
erwise, it samples t ←R [2B,q − 2B] and sets b ←
1{|a∗−qTx+ eTx− t|< B} This is the ideal distribution
IDEALA ,S ,x,λ.

To complete the proof, we now show that each adjacent pair
of distributions is indistinguishable. First, hybrids H0 and
H1 are computationally indistinguishable by Theorem 46. To
complete the proof, we show that H1 and H2 are identically
distributed:

• Hybrids H1 and H2 are identically distributed. Let a∗ ∈
Zq be the adversary’s response in the two experiments.
Define the quantity z = a∗−qTx+ eTx. We consider two
possibilities:
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– Suppose |z|<B. In H2, the challenger always sets b= 1.
We claim this is also the case in H1. By construction,
we can first write

uTx = qTx− t ·ηT
i x = qTx− xit. (5)

This means

|z|=
⃓⃓
a∗−qTx+ eTx

⃓⃓
=
⃓⃓
a∗−uTx+ eTx− xit

⃓⃓
. (6)

Since xi ∈ {0,1}, we have x′i = xi and b = 1 in H1.

– Suppose |z| ≥ B. In this case, the challenger in H2 sam-
ples t ←R [2B,q− 2B] and sets b = 1 if |z− t| < B and
b = 0 otherwise. Consider the challenger’s behavior in
H1. By Eq. (6), we have that b = 1 only if⃓⃓

a∗−uTx+ eTx− (1− xi)t
⃓⃓
< B.

By Eq. (5), this is equivalent to |z− (1−2xi)t| < B.
Like in H2, the challenger in H1 samples t←R [2B,q−
2B] after the adversary outputs a∗. We consider two
possibilities:

* If xi = 0, then 1− 2xi = 1, and the challenger in
H1 sets b← 1{|z− t|< B}. This is identical to the
behavior in H2.

* If xi = 1, then 1− 2xi = −1, and the challenger in
H1 sets b← 1{|z+ t|< B}. Since t←R [2B,q−2B]
the distributions of t mod q and −t mod q are iden-
tical (the interval is symmetric about 0 over Zq).
Since t and z are independent, the distribution of
1{|z+ t|< B} is identically distributed as that of
1{|z− t|< B}. Once again, the distribution of b in
H1 is distributed identically to that in H2.

We conclude that the distribution of b is identical in H1
and H2 in this case.

G Single-server authenticated PIR from DDH

We now analyze our DDH-based single-server scheme (Con-
struction 3). Correctness follows by construction. Therefore,
this section focuses on security.

G.1 Decisional Diffie-Hellman assumption
We first recall the decisional Diffie-Hellman assumption:

Definition 49 (Decisional Diffie-Hellman). Let λ be a secu-
rity parameter and let G be a group of prime order p where
1/p = negl(λ). Let g be a generator of G. We say that the
decisional Diffie-Hellman assumption (DDH) holds in G if
the following distributions are computationally indistinguish-
able:

(g,h,gx,hx)≈c (g,h,gx,z)

where h,z←R G and x←R Zp.

By a random self-reduction [72, 85], it is straightforward
to show that if the DDH assumption holds in G, then for all
polynomials N = N(λ), the following distributions are also
computationally indistinguishable:

(g,h1,hr
1, . . . ,hN ,hr

N)≈c (g,h1,z1, . . . ,hN ,zN), (7)

where h1, . . . ,hN ,z1, . . . ,zN ←R G and r←R Zp.

G.2 A key lemma
To analyze the security (and integrity) of Construction 3, we
start by proving the following lemma, which will feature in
both the security and the integrity analysis.

Lemma 50. Let λ be a security parameter, x ∈ {0,1}N be a
database, i ∈ [N] be an index, and A be an adversary. Con-
sider Construction 3 and define distributions D(0)

A ,x,i,λ and

D(1)
A ,x,i,λ:

Distribution D(0)
A ,x,i,λ

1 : d←Digest(1λ,x)

2 : (st,q)←Query(d, i)

3 : (stA ,a
∗)← A(d,x,q)

4 : x′i← Reconstruct(st,a∗)

5 : return x′i

Distribution D(1)
A ,x,i,λ

1 : d←Digest(1λ,x)

2 : q←R GN

3 : (stA ,a
∗)← A(d,x,q)

4 : if a∗ = ∏
j∈[N]

qx j
j then x′i← xi

5 : else x′i←⊥
6 : return x′i

Suppose the DDH assumption holds in G and H is modeled as
a random oracle. Then, for every database length N = N(λ),
database x ∈ {0,1}N , index i ∈ [N], and efficient adversary
A , ⃓⃓⃓

Pr[D(0)
A ,x,i,λ = 1]−Pr[D(1)

A ,x,i,λ = 1]
⃓⃓⃓
≤ negl(λ).

Proof. Take any database length N = N(λ), database x ∈
{0,1}N and an index i ∈ [N]. We show that the distributions
D(0)

A ,x,i,λ and D(1)
A ,x,i,λ are computationally indistinguishable. In

the following analysis, we write hi ∈G to denotes H(i), and
we model H as a random oracle (which the reduction algo-
rithm is allowed to program) [13]. We now define a sequence
of hybrid experiments:

• H0: This is the distribution D(0)
A ,x,i,λ. In this distribu-

tion, the response x′i ∈ {0,1,⊥} is computed via x′i ←
Reconstruct(st,a∗).

• H1: Same as H0, except the challenger changes how x′i is
computed. Instead of computing x′i← Reconstruct(st,a∗),
the challenger sets x′i as follows:

– If a∗ = hyt
i (h

r
i )

xi ∏ j ̸=i(hr
j)

x j for y ∈ {0,1}, then x′i← y.
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– Otherwise, the challenger sets x′i←⊥.

• H2: Same as H1, except the challenger replaces the
tuple of group elements (g,h1,hr

1, . . . ,hN ,hr
N) with

(g,h1,z1, . . . ,hN ,zN) where z1, . . . ,zN ←R G and r ←R Zp.
Specifically, the challenger constructs the query q =
(q1, . . . ,qN) by setting q j ← z j for j ̸= i and qi ← ziht

i .
When computing x′i, the challenger proceeds as follows:

– If a∗ = hyt
i zxi

i ∏ j ̸=i z
x j
j for y ∈ {0,1}, then x′i← y.

– Otherwise, the challenger sets x′i←⊥.

• H3: Same as H2 except the challenger samples q←R GN .
Then, after the adversary outputs the response a∗, it sets
z j = q j for all j ̸= i and zi ← qi/ht

i where t ←R Zp. The
response a′i is computed exactly as in H2.

• H4: Same as H2 except the challenger again changes how
it computes x′i:

– If a∗ = hxit
i zxi

i ∏ j ̸=i z
x j
j , then x′i← xi.

– Otherwise, the challenger sets x′i←⊥.

• H5: Same as H4, except the the challenger sets x′i← xi if
a∗ = ∏ j∈[N] q

x j
j and x′i←⊥ otherwise. This is the distribu-

tion D(1)
A ,x,i,λ.

To complete the proof, we now show that each adjacent pair
of distributions are indistinguishable:

• Hybrids H0 and H1 are identical distributions. In both
experiments, d = ∏ j∈[N] h

x j
j , q = (q1, . . . ,qN), and st =

(i,d,r, t), where q j = hr
j for j ̸= i and qi = hr+t

i for some
r, t ∈ Zp. Let a∗ be the adversary’s response in H0, and
consider the value of x′i← Reconstruct(st,a∗) in H0:

– If a∗ = dr, then x′i = 0. If a∗ = drht
i , then x′i = 1. This

is equivalent to setting x′i = y ∈ {0,1} if a∗ = drhyt
i .

Substituting in the above relations, this means that in
H0, x′i = y ∈ {0,1} if

a∗ = drhyt
i =

(︄
∏
j∈[N]

h
x j
j

)︄r

hyt
i = hyt

i (h
r
i )

xi ∏
j ̸=i

(hr
j)

xi .

– Otherwise x′i =⊥.

This is precisely the distribution of x′i in H1.

• Hybrids H1 and H2 are computationally indistinguishable
under the DDH assumption and modeling H as a random
oracle. To see this, suppose there exists an efficient ad-
versary A that is able to distinguish hybrids H1 and H2
with non-negligible probability. We use A to construct an
adversary B that distinguishes the distributions in Eq. (7):

1. At the beginning of the game, algorithm B receives a
challenge vector (g,h1,T1, . . . ,hN ,TN).

2. Algorithm B programs the random oracle H(i) ↦→ hi
for each i∈ [N]. If A ever queries H on an input k /∈ [N],
algorithm B samples a random rk←R G and defines the
mapping H(k) ↦→ rk.

3. Algorithm B now constructs the digest d←∏ j∈[N] h
x j
j

as in H1 and H2. To construct the query, algorithm B
sets q j ← Tj for j ̸= i and qi← Tiht

i where t ←R Zp. It
gives the digest d, the database x, and the query q to A .

4. Algorithm A outputs a response a∗. Algorithm B com-
putes x′i as follows:

– If a∗ = hyt
i T xi

i ∏ j ̸=i T
x j
j , then x′i← xi.

– Otherwise, x′i←⊥.

5. Algorithm B replies to A with x′i and outputs whatever
A outputs.

Since h1, . . . ,hN ←R G, the outputs of the random oracle
are correctly simulated. Correspondingly, algorithm B per-
fectly simulates the distribution of the digest d for A . We
now consider the two possible challenge distributions:

– Suppose Ti = hr
i for all i∈ [N] and where r←R Zp. In this

case, q j = hr
j for all j ̸= i and q j = hr+t

i where t←R Zp.
Similarly, x′i = y ∈ {0,1} if a∗ = hyt

i (h
r
i )

xi ∏ j ̸=i(hr
j)

x j ,
which exactly matches the distribution in H1.

– Suppose Ti = zi←R G for all i ∈ [N]. In this case, q j =
z j for all j ̸= i and q j = ziht

i where t ←R Zp. This is
the query distribution in H2. Similarly, to compute the
response x′i, algorithm B sets x′i = y ∈ {0,1} if a∗ =
hyt

i zxi
i ∏ j ̸=i z

x j
j , which matches the distribution in H2.

We conclude that algorithm B distinguishes between the
distributions in Eq. (7) with the same distinguishing ad-
vantage as A , and the claim follows.

• Hybrids H2 and H3 are identically distributed. In H2, the
z j’s are sampled uniformly and independently from G (and
also independent of h1, . . . ,hN , t). Thus, the distribution of
q = (q1, . . . ,qN) in H2 is identical to that in H3. Finally, in
H2, qi = ziht

i , where t←R Zp. This is the distribution in H3.

• The statistical distance between H3 and H4 is 1/p =
negl(λ). By construction, the two experiments are iden-
tical unless the adversary outputs a∗ where a∗ =

h(1−xi)t
i zxi

i ∏ j ̸=i z
x j
j . Using the relation zi = qi/ht

i , this be-
comes

a∗ = h(1−xi)t
i

qxi
i

hxit
i

∏
j ̸=i

z
x j
j = (ht

i)
1−2xiqxi

i ∏
j ̸=i

z
x j
j ,

or equivalently, if

(ht
i)

1−2xi =
a∗

qxi
i ∏ j ̸=i z

x j
j

. (8)

Now, in H3 and H4, the challenger samples t←R Zp after
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the adversary outputs a∗. Moreover, since xi ∈ {0,1}, it
follows that 1−2xi ∈ {−1,1}. Since t is sampled indepen-
dently of a∗, qi and z j for all j ∈ [N], and hi is a generator
of G (with overwhelming probability), Eq. (8) holds with
probability at most 1/p = negl(λ) over the randomness of
t.

• Hybrids H4 and H5 are identical experiments. In H4, the
challenger sets x′i = xi if and only if

a∗ = hxit
i zxi

i ∏
j ̸=i

z
x j
j = (ziht

i)
xi ∏

j ̸=i
z

x j
j = ∏

j∈[N]

q
x j
j ,

since q j = z j for all j ̸= i and qi = ziht
i . This is the distri-

bution in H5.

G.3 Integrity
Theorem 51 (Integrity of Construction 3). Suppose the DDH
assumption holds in G and H is modeled as a random oracle.
Then, Construction 3 (instantiated with group G and hash
function H) provides integrity.

Proof. Fix a database x ∈ {0,1}N and an index i ∈ [N], and
take any efficient adversary A for the integrity game. We
define the following hybrid experiments:

• H0: This is the real integrity game.

• H1: Same as H0, except the challenger samples q←R GN

and sets x′i← xi if a∗ = ∏ j∈[N] q
x j
j and x′i←⊥ otherwise.

The outputs of H0 and H1 are computationally indistinguish-
able by Theorem 50. Next, in H1, Pr[x′i /∈ {xi,⊥}] = 0 by con-
struction. The claim now follows by a hybrid argument.

G.4 Privacy
Theorem 52 (Privacy of Construction 3). Suppose the DDH
assumption holds in G and H is modeled as a random oracle.
Then, Construction 3 (instantiated with group G and hash
function H) provides privacy.

Proof. Fix a database x ∈ {0,1}N and an index i ∈ [N]. Take
any efficient adversary A = (A0,A1). We construct an effi-
cient simulator S = (S0,S1) as follows:

Simulator S0
(︁
1λ,d,x

)︁
1 : q = (q1, . . . ,qN)←R GN

2 : stS ←∏ j∈[N]
qx j

j

3 : return (stS ,q)

Simulator S1(stS ,a∗)

1 : b← 1{a∗ = stS}
2 : return b

We show that the real distribution REALA ,x,i,λ and ideal dis-
tribution IDEALA ,S ,x,λ are computationally indistinguishable.
We define a sequence of hybrid experiments:

• H0: This is the real distribution REALA ,x,i,λ.

• H1: Same as H0, except the challenger samples q←R GN

and sets x′i← xi if a∗ = ∏ j∈[N] q
x j
j and x′i←⊥ otherwise.

• H2: This is the ideal distribution IDEALA ,S ,x,λ.

We now argue that adjacent pair of hybrid experiments are
indistinguishable:

• H0 and H1 are computationally indistinguishable by Theo-
rem 50.

• H1 and H2 are identical experiments. Namely, in H2, the
challenger sets b = 1 if and only if a∗ = ∏ j∈[N] q

x j
j , which

coincides with the behavior in H1.

G.5 Handling larger database rows

Our DDH-based construction (Construction 3) directly sup-
ports (small) multi-bit database records with no communi-
cation overhead. The cost is the client’s computational cost
increases by a factor of 2ℓ/2, where ℓ is the bit-length of the
record.

The idea is simple. Suppose the database consists of N ℓ-
bit records x1, . . . ,xℓ ∈ {0,1}ℓ. The digest, query, and answer
algorithms are unchanged (the only difference is that instead
of each record xi ∈ {0,1} being a single bit, we now treat each
record xi ∈ {0,1}ℓ as an integer between 0 and 2ℓ−1). The
only difference is during reconstruction, the client now learns
the value hxit

i . Since the client knows the blinding factor t, it
can exponentiate with t−1 mod p to obtain hxi

i . Namely, the
client is able to obtain an encoding of the database record in
the exponent. Recovering the value of xi now requires com-
puting a discrete logarithm (base hi). This can be computed
in time O(

√
2ℓ) using Pollard’s kangaroo method [80], or al-

ternatively, if ℓ is very small, then the client can precompute
a lookup table of possible values for hxi

i . Thus, this approach
is suitable for small values of ℓ (e.g., ℓ≤ 32).

While there are applications for a small-row single-server
authenticated PIR scheme, we still hope that it is possible
to construct a more bandwidth- and computation-efficient
scheme in the future. We unsuccessfully attempted to combine
an unauthenticated classic single-server PIR scheme with
some sort of algebraic integrity-protection mechanism, but
it seems non-trivial to provide our integrity properties while
making only black-box use of the underlying single-server
PIR scheme. Further investigation along these lines would be
an interesting task for future work.

Supporting multi-bit records in the lattice-based setting.
We note that a similar approach as above can be applied to the
lattice-based construction (Construction 2) to support multi-
bit records. While correctness holds, the security analysis
is more challenging. Namely, both integrity and privacy of
Construction 2 (Theorems 47 and 48) rely on the extended
LWE assumption where we require that LWE holds even if
the distinguisher is given a linear combination eTx of the
LWE error. When the database entries are binary-valued (i.e.,
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Database size N [bits]: 213 223 233

Integrity error εΠ = 2−64 3 4 7
Integrity error εΠ = 2−128 6 9 15

Table 9: Selection of the error correcting code parameter t for differ-
ent database sizes and integrity errors.

x ∈ {0,1}N), we can appeal to [20, Lemma 4.3, Claim 4.6,
Lemma 4.7] to base hardness on standard LWE. It seems
plausible that a similar (possibly less tight) reduction applies
when the database x ∈ ({0,1}ℓ)N consists of ℓ-bit integers,
and this is an interesting question for further exploration.

H Parameter selection

In this section we discuss parameter selection for the scheme
that use integrity amplification (Construction 6). As the base
authenticated PIR scheme (denoted PIR0 in Construction 6)
we use the LWE-based scheme (Construction 2) with mod-
ulus q = 232 and lattice dimension n = 1100, which has in-
tegrity error ε = (2B− 1)/(q− 4B + 1) (cf. Theorem 47).
The correctness of Construction 2 (Theorem 45) states that
B≤
√

λNs. By Theorem 41 we know that if we use a simple
repetition code (which corrects up to t errors by expanding
each database bit into 2t + 1 codeword bits) and PIR0 has
integrity error ε, then Construction 6 has integrity error εt+1.
Table 9 shows the choice of t to achieve integrity error εΠ

in Construction 6 for different database sizes N, where N
indicates the number of single bit records in the database.

I Artifact Appendix

I.1 Abstract
The source code for our single- and multi-server authenticated-
PIR schemes and the Keyd public-key server is available at
https://github.com/dedis/apir-code under open-source
license. The same repository contains unauthenticated-PIR
schemes that we implemented as baselines for comparison; as
single-server PIR baseline we use the original implementation
of SimplePIR [52]. Our implementation and the implemen-
tation of SimplePIR use C for the performance-critical func-
tions. We perform all the experiments on machines equipped
with two Intel Xeon E5-2680 v3 (Haswell) CPUs, each with
12 cores, 24 threads, and operating at 2.5 GHz, and 256 GB
of RAM.

I.2 Description & Requirements

I.2.1 Security, privacy, and ethical concerns

None.

I.2.2 How to access

The source code for all the authenticated-PIR
schemes, the classic-PIR schemes and Keyd under
which this artifact evaluation was tested is avail-
able at https://github.com/dedis/apir-code/tree/

af3202e3776d4cb880256372dd51613ee34532ba.

I.2.3 Hardware dependencies

We perform all the experiments on machines equipped with
two Intel Xeon E5-2680 v3 (Haswell) CPUs, each with 12
cores, 24 threads, and operating at 2.5 GHz. Each machine
has 256 GB of RAM, and runs Ubuntu 20.04 and Go 1.17.5.
Machines are connected with 10 Gigabit Ethernet. In the
experiments for the multi-server schemes and Keyd (Sec-
tions 7.1, 7.2 and 7.4), the client and the servers run on sep-
arate machines—the experiments use at most six machines.
For single-server schemes we use a single machine that runs
both client and server. However, it is possible to run the code,
together with the accompanying tests, benchmarks and exper-
iments, on any machine equipped the software dependencies
listed in the next section.

I.2.4 Software dependencies

Running run the code requires Go (tested with Go 1.17.5 and
1.19.5) and a C compiler (tested with GCC 9.4.0).

Reproducing the evaluation results requires GNU Make,
Screen, Python 33, Fabric, Tomli, Numpy and Matplotlib.

I.2.5 Benchmarks

None.

I.3 Set-up

I.3.1 Installation

Installation instructions are given in the Setup sections of
https://github.com/dedis/apir-code/blob/main/README.md
and we report them here. To run the code in the repository
install Go (tested with Go 1.17.5) and a C compiler (tested
with GCC 9.4.0). To reproduce the evaluation results, install
GNU Make, Screen, Python 3, Fabric, Numpy and Matplotlib.

I.3.2 Basic Test

To run all basic tests, users should clone the repository, and
download the dump of the SKS PGP key directory using the
command

bash scripts/download_sks_parsed.sh

3The package python-is-python3 might be needed.
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in the repository’s root directory.
To run the basic test, use the following command:

go test

in the repository’s root directory. This command takes about
six minutes to run and outputs the time taken by each test. If
all the tests pass, the output ends as follows:

PASS

ok github.com/si-co/apir-code

I.4 Evaluation workflow

I.4.1 Major Claims

Our paper claims what follows.

Multi-server point queries (Section 7.1).
(C1): The maximum overhead for our multi-server

authenticated-PIR scheme for point queries, in compari-
son with classic unathenticated PIR is 2.9× for user
time and 1.8× for bandwidth. This is the outcome of
experiment (E1), whose results are presented in Fig. 3.
Update October 19, 2024: We fix the experiment and
update the results as 3× for user time and 1.6× for band-
width. The evaluation workflow does not change. See
Section J.2 for more information.

(C2): The impact of the number of servers on our multi-
server authenticated-PIR scheme for point queries is
almost negligible for user time and imposes a linear
increase for bandwidth. This is the result of experiment
(E2), whose results are reported in Fig. 4 in the body of
the paper.

(C3): The preprocessing cost for our multi-server authen-
ticated PIR scheme for point queries is linear in the
database size. This is the result of experiment (E3),
whose results are reported in Fig. 8 in Section C.

Multi-server complex queries (Section 7.2).
(C4): The user time and bandwidth overheads of the

authenticated-PIR schemes for complex queries against
classic unauthenticated-PIR schemes are less than 1.1×.
This is the outcome of experiment (E4), whose results
are presented in Fig. 5.

Single-server point queries (Section 7.3).
(C5): The authenticated-PIR schemes from the decisional

Diffie-Hellman assumption (DDH) and from the
learning-with-errors assumption (LWE) have integrity
error 2−128. The DDH construction has a smaller digest,
i.e., lower offline bandwidth, but has twice the online
bandwidth of the LWE construction. The LWE construc-
tion is also faster (3-79×). The scheme with integrity
amplification (LWE+) has integrity error 2−64 but the
same classic-PIR privacy as SimplePIR [52]. LWE+ is
faster than LWE for the 1 KiB and 1 MiB databases, but

slower (1.4×) for the 1 GiB database. SimplePIR is 30-
100× faster than LWE+. These results are the outcome
of experiment (E5), whose results are presented in Fig. 6
in the body of the paper.

Application evaluation (Section 7.4).
(C6): For classic key look-ups we measure the wall-clock

time needed to retrieve a PGP public-key with authen-
ticated PIR, classic PIR without authentication, and by
direct download. We measure 1.11 seconds for authen-
ticated PIR, 1.10 seconds for unauthenticated PIR and
0.22 seconds for non-private direct look-up. This is the
result of experiment (E6), whose results are discussed in
Section 7.4 in the body of the paper.

(C7): To analyze the performance of Keyd in computing
private statistics over keys, we measure user-perceived
time and bandwidth of different predicate queries. For
all the predicates, the user-perceived time and bandiwdth
overheads of authenticated PIR are upper bounded by a
factor of 1.05×. This is the outcome of experiment (E7),
whose results are presented in Table 7 in the body of the
paper.

I.4.2 Experiments

The experiments use at most six server machines (to run the
client and servers) and an additional machine (that we call
local) to manage the experiments. The local machine can
be a commodity computer, since it is used only to run light
scripts and gather results. Clone the repository on all the
server machines and on the local machine.
(E1): [15 human-minutes + 2 compute-hour]: This experi-

ment measures the user-time and bandwidth overheads of
two-server authenticated-PIR schemes for point queries
in comparison with unauthenticated PIR. This experi-
ments uses three server machines: one client and two
servers.
Preparation: Edit simulations/multi/config.toml

on the local machine to indicate the IP address of the
client machine and the IP addresses and ports of the two
server machines. The default port numbers are safe to
use.
Execution: Run the following commands from the
repository’s root on the local machine:

cd simulations/multi

APIR_USER=<username>

APIR_PASSWORD=<password>

APIR_PATH=<path>

python simul.py -e point

where <username> and <password> are the username
and password for the servers, respectively, and <path>

is the path of the repository’s root on the servers.
Results: Run the following commands from the reposi-
tory’s root:
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cd simulations/multi

python plot.py -e point

The command stores the figure in
simulations/multi/figures/point.eps.

(E2): [15 human-minutes + 18 compute-minutes]: This ex-
periment measures the impact of the number of servers
on our multi-server authenticated-PIR schemes for point
queries. This experiments uses six server machines: one
client and five servers.
Preparation: Edit simulations/multi/config.toml

on the local machine to indicate the IP address of the
client machine and the IP addresses and ports of the five
server machines. The default port numbers are safe.
Execution: Run the following commands from the
repository’s root on the local machine:

cd simulations/multi

APIR_USER=<username>

APIR_PASSWORD=<password>

APIR_PATH=<path>

python simul.py -e point_multi

where <username>, <password> and <path> are as in
experiment E1.
Results: Run the following commands from the reposi-
tory’s root:

cd simulations/multi

python plot.py -e point_multi

The command stores the figure in
simulations/multi/figures/multi.eps.

(E3): [5 human-minutes + 9 compute-minutes]: This experi-
ment measures the cost of preprocessing for our multi-
server authenticated-PIR scheme for point queries. This
experiment uses one server machine.
Preparation: Nothing.
Execution: Run the following commands from the
repository’s root on the server machine:

cd simulations

make preprocessing

Results: Run the following commands from the reposi-
tory’s root:

cd simulations

python plot.py -e preprocessing

The command stores the figure in
simulations/figures/preprocessing.eps.

(E4): [15 human-minutes + 36 compute-minutes]: This ex-
periment measures the user-time and bandwidth over-
heads of two-server authenticated-PIR schemes for com-
plex queries in comparison with unauthenticated PIR.
This experiments uses three server machines: one client
and two servers.

Preparation: As in experiment E1. The file
simulations/multi/config.toml on the local
machine must list only two servers.
Execution: Run the following commands from the
repository’s root on the local machine:

cd simulations/multi

APIR_USER=<username>

APIR_PASSWORD=<password>

APIR_PATH=<path>

python simul.py -e predicate

where <username>, <password> and <path> are as in
experiment E1.
Results: Run the following commands from the reposi-
tory’s root:

cd simulations/multi

python plot.py -e predicate

The command stores the figure in
simulations/multi/figures/complex_lines.eps.

(E5): [15 human-minutes + 21 compute-hour]: This ex-
periment measures the user-time and bandwidth over-
heads of single-server authenticated-PIR schemes for
point queries in comparison with SimplePIR [52]. This
experiment uses one server machine.
Preparation: Nothing.
Execution: Run the following commands from the
repository’s root on the server machine:

cd simulations

make single

To evaluate SimplePIR, clone the following repository:
https://github.com/si-co/simplepir. The code is
the same as the original repository, but it runs the eval-
uation on the same database sizes as authenticated PIR
and produces a compatible JSON file for the results. Run
the following command (45 compute-minutes) from the
repository’s root on the server machine:

cd pir

go test -timeout 0 -run=PirSingle

Copy the file simplePIR.json (in the pir directory) in
simulation/results.
Results: Run the following commands from the reposi-
tory’s root:

cd simulations

python plot.py -e single

The command stores the figure in
simulations/figures/single_bar.eps.

(E6): [20 human-minutes + 10 compute-minutes]: This ex-
periment measures the user-time needed download a
PGP public-key with authenticated PIR for point queries,
classic unauthenticated PIR for point queries and by di-
rect download. This experiment uses three machines:
one client and two servers.
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Preparation: Download the dump of the SKS PGP key
directory using the command

bash scripts/download_sks_parsed.sh

in the repository’s root directory on the two
servers. Set the IP addresses of the two servers
in simulations/real/real_client_pir.sh and in
config.toml (in the repository’s root) on the client
machine.
Execution: Run the following commands from the
repository’s root on the first server:

cd simulations/real

bash real_server_pir.sh 0

Similarly, on the second server run:

cd simulations/real

bash real_server_pir.sh 1

A server is running properly when it logs:

gRPC server started at <ip>:<port>

Once both servers started, run the following command
on the client machine:

cd simulations/real

bash real_client_pir.sh

This command executes 30 look-ups with unauthenti-
cated PIR and 30 with authenticated PIR. At the end, the
client automatically shuts both servers down.
Results: Copy simulations/results/stats_* from
the three machines (two servers and the client) on the lo-
cal machine in the folder /simulations/results. Run
the following commands:

cd simulations

python plot.py -e real

The command prints the results directly on the terminal.
(E7): [20 human-minutes + 5 compute-hours]: This experi-

ment measures the user-time needed to compute statistics
on the PGP public-keys with authenticated PIR for pred-
icate queries and unauthenticated PIR. This experiment
uses three machines: one client and two servers.
Preparation: As in Experiment E6, but
set the IP addresses of the two servers in
simulations/real/real_client_fss.sh.
Execution: Run the following commands from the
repository’s root on the first server:

cd simulations/real

bash real_server_fss.sh 0

Similarly, on the second server run:

cd simulations/real

bash real_server_fss.sh 1

For this experiment, it is not needed to wait for the
servers to properly start. Run the following command on
the client machine:

cd simulations/real

bash real_client_fss.sh

Results: Copy simulations/results/stats_* from
the three machines (two servers and the client) on the lo-
cal machine in the folder /simulations/results. Run
the following commands:

cd simulations

python plot.py -e realcomplex

The command prints the results directly on the terminal.
Table 7 has a different formatting, but values are the
same as the one that the command prints on screen.

I.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/usenixsec2023/.

J Changelog

J.1 February 23, 2024
This revision includes the following changes.

• We update Section C by adding an overview of the proof
strategy (Section C.1) and by fixing the proofs of Theo-
rem 26 and Theorem 28 after Brett Falk, Pratyush Mishra,
and Matan Shtepel pointed out a flaw in the original proof
of Theorem 28 [84].

• We add the USENIX Security ’23 Artifact Appendix in
Section I and the corresponding badges at the beginning
of the paper.

• We fix some typos in the document.

J.2 October 19, 2024
This revision included the following changes.

• We fix an error in Fig. 3, which shows the cost of
retrieving a 1 KiB record using classic and authenticated
PIR for point queries from two servers. The previous
plot was the results of an experiment that used plain
secret-sharing-based PIR as underlying classic PIR
sheme, whereas the updated figure reflects results using
a state-of-the-art PIR scheme based on distributed point
point functions (DPF) [17, 18, 48]. Additionally, we
change the structure of the database: the previous plot
used a database structured as a matrix, where multiple
blocks of data are stored in a single row. The current
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approach represents the database as a vector, which
better fits DPF-based PIR. We update Section 1 and
Section 7.1 accordingly, and mention this error in Section I.
The commit of reference for the new version of Fig. 3
is 0089520d113178aceca4534ebfd0e59d941d8bc7

and the new results file are included in
simulations/multi/final_results_fix.

• We fix the caption of Fig. 4, which now mention the un-
derlying classic PIR scheme that the experiment uses, i.e.,
classic secret-sharing over the binary field. We use this
approach instead of DPF-based PIR as DPF constructions
have tractable shares only with two servers. We update the
second paragraph of Section 7.1 accordingly.

• We fix some additional typos in the document.
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